Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-02T19:11:34.483Z Has data issue: false hasContentIssue false

Powder diffraction data and preliminary spectroscopic and thermal characterization of pinaverium bromide, a drug used for functional gastrointestinal disorders

Published online by Cambridge University Press:  14 January 2021

José H. Quintana Mendoza*
Affiliation:
Grupo de Investigación Biocalorimetría, Departamento de Química, Facultad de Ciencias Básicas, Universidad de Pamplona, Km 1, vía Bucaramanga, Pamplona, Colombia
Andrea P. Aparicio
Affiliation:
Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria. Bucaramanga, Colombia
J. A. Henao
Affiliation:
Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria. Bucaramanga, Colombia
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Pinaverium bromide (C26H41Br2NO4) is an active pharmaceutical ingredient (API) usually prescribed for the relief of spasm and functional gastrointestinal disorders. This work reports its powder diffraction data, Raman and FT-IR spectroscopy and thermal characterization. Indexing of the powder diffraction pattern showed this material crystallizes in a monoclinic unit cell with a = 16.00(4) Å, b = 8.901(2) Å, c = 19.225(4) Å, β = 98.68(3)°, and V = 2808.2(6) Å3.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boultif, A. and Loüer, D. (2014). “Some further considerations in powder diffraction pattern indexing with the dichotomy method,” Powd. Diffr. 29, S7S12.Google Scholar
Christen, M. O. (1990). “Action of pinaverium bromide, a calcium-antagonist, on gastrointestinal motility disorders,” Gen. Pharmacol-vasc. S 21, 821825.10.1016/0306-3623(90)90439-SCrossRefGoogle ScholarPubMed
Christen, M. O. and Tassignon, J. P. (1989). “Pinaverium bromide: a calcium channel blocker acting selectively on the gastrointestinal tract," Drug Dev. Res. 18, 101112.CrossRefGoogle Scholar
Da Silva, M., Mouzer, A. K., Coimbra, L., Rocha, B., and Todeschini, V. (2017). “Determination of pinaverium bromide in pharmaceutical dosage forms by a validated stability-indicating LC method,” Drug Anal. Res. 1, 3843.Google Scholar
Deodhe, S., Dhabarde, D. M., Kamble, M. K., and Mahapatra, D. M. (2017). “Novel stability indicating RP-HPLC method for the estimation of pinaverium bromide in tablet formulation: assay development and validation,” Eurasian J. Anal. Chem. 12, 316.10.12973/ejac.2017.00150aCrossRefGoogle Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1, 108113.10.1107/S002188986800508XCrossRefGoogle Scholar
Dong, C. (1999). “Powderx: windows-95-based program for powder X-ray diffraction data processing,” J. Appl. Crystallogr. 32, 838838.10.1107/S0021889899003039CrossRefGoogle Scholar
Froguel, E., Chaussade, S., Roche, H., Fallet, M., Couturier, D., and Guerre, J. (1990). “Effects of an intestinal smooth muscle calcium channel blocker (pinaverium bromide) on colonie transit time in humans,” J. Neurogastroenterol. 2, 176179.10.1111/j.1365-2982.1990.tb00021.xCrossRefGoogle Scholar
Guerot, C., Khemache, A., Sebbah, J., and Noel, B. (1988). “Electrophysiological study of intravenous pinaverium bromide in cardiolog,” Curr. Med. Res. Opin. 11, 7379.10.1185/03007998809110449CrossRefGoogle Scholar
Laugier, J. and Bochu, B. (2002). CHEKCELL. “LMGP-Suite Suite of Programs for the Interpretation of X-Ray. Experiments,” ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46. 38042 Saint Martin d'Hères, France. Available at: http://www.inpg.fr/LMGP and http://www.ccp14.ac.uk/tutorial/lmgp/Google Scholar
Mighell, A. D., Hubbard, C. R., and Stalick, J. K. (1981). NBS* AIDS80: A Fortran Program for Crystalographic Data Evaluation. USA: National Bureau Standards, Technical Note 1141. (NBS*AIDS83is a newer version of NBS*AIDS80).10.6028/NBS.TN.1141CrossRefGoogle Scholar
Quintana, J. H., Toro, R. A., Blanco, L. A., and Henao, J. A. (2016). “Characterization by X ray powder diffraction of alpha lipoic acid,” Powd. Diffr. 32, 3539.10.1017/S0885715616000658CrossRefGoogle Scholar
Rachinger, W. A. (1948). “A correction for the α1 α2 doublet in the measurement of widths of X-ray diffraction lines,” J. Sci. Instrum. 25, 254.10.1088/0950-7671/25/7/125CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1990). “FULLPROF: a program for Rietveld refinement and pattern matching analysis,” in Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, p. 127.Google Scholar
Saviztky, A. and Golay, M. J. (1964). “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 16271639.Google Scholar
Smith, G. S. and Snyder, R. L. (1979). “FN: a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.10.1107/S002188987901178XCrossRefGoogle Scholar
Sonneveld, E. J. and Visser, J. W. (1975). “Automatic collection of powder diffraction data from photographs,” J. Appl. Crystallogr. 8, 17.10.1107/S0021889875009417CrossRefGoogle Scholar