Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T14:56:22.816Z Has data issue: false hasContentIssue false

Powder data for synthetic analogue of a mineral nickelphosphide

Published online by Cambridge University Press:  06 March 2012

Roman Skála*
Affiliation:
Czech Geological Survey, Klárov 3/131, CZ-11821 Praha 1, Czech Republic
Milan Drábek
Affiliation:
Czech Geological Survey, Klárov 3/131, CZ-11821 Praha 1, Czech Republic
*
a)Electronic mail: [email protected]

Abstract

All known occurrences of nickelphosphide (Ni,Fe)3P—a mineral encountered mainly in meteoritic irons—represent relatively small grains, which prevents acquiring powder data of a reasonable quality. Synthetic analogues of this mineral, corresponding chemically to that found in the meteorite Vicenice, have been synthesized. Powder data collected using a standard laboratory diffractometer in the Bragg–Brentano geometry are presented. The space group of nickelphosphide is identical to that of schreibersite (Fe,Ni,Co)3P and synthetic Ni3P—I4. The unit-cell dimensions refined from the powder data are a=9.0168(1) Å, c=4.4501(1) Å, and V=361.80(1) Å3, with Z=8.

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Britvin, S. N., Kolomensky, V. D., Boldyreva, M. M., Bogdanova, A. N., Kretser, Yu. L., Boldyreva, O. N., and Rudashevsky, N. S. (1999). “Nickelphosphide (Ni,Fe)3P—the nickel analog of schreibersite,” Zapiski Vseros. Mineral. Obsch. 128, 64–72.Google Scholar
Burnham, C. W. (1962). “Lattice constant refinement,” Carnegie Inst. Wash. Yearbook 61, 132–135.Google Scholar
Coelho, A. A. and Cheary, R. W. (1997). “X-ray line profile fitting program, XFIT,” School of Physical Sciences, University of Technology, Sydney, New South Wales, Australia. ftp://ftp.minerals.csiro.au/pub/xtallography/koalarietGoogle Scholar
Doan, A. S.and Goldstein, J. I. (1970). “The ternary phase diagram, Fe–Ni–P,” Metall. Trans. MTGTBF 1, 17591767. 8q5, MTGTBF Google Scholar
Doenitz, F. D. (1968). “Die Kristallstruktur des Meteoritenminerals Rhabdit,” Naturwissenschaften NATWAY 55, 387. naw, NATWAY Google Scholar
Doenitz, F. D. (1970). “Die Kristallstruktur des meteoritischen Rhabdits (Fe,Ni)3P,Z. Kristallogr. ZEKRDZ 131, 222236. zek, ZEKRDZ Google Scholar
Larsson, E. (1965). “An X-ray investigation of the Ni-P system and the crystal structures of NiP and NiP2,Ark. Kemi ARKEAD 23, 335365. arz, ARKEAD Google Scholar
Shunk, F. A. (1969). Constitution of Binary Alloys (McGraw–Hill, New York), 720 pp.Google Scholar
Skála, R. and Cı´sařová, I. (1999). “Crystal structure of schreibersite from Toluca iron meteorite,” in Lunar and Planetary Science XXX, Abstract 1359, Lunar and Planetary Institute, Houston (CD-ROM).Google Scholar
Skála, R. and Cı´sařová, I. (2000). “Iron-nickel partitioning over nonequivalent sites in crystal structure of schreibersite from the Odessa iron meteorite,” Meteoritics Planet. Sci. 35, A149–A150.Google Scholar
Skála, R. and Drábek, M. (2000). “Variation of unit-cell dimensions of experimentally synthesized members of Fe3P–Ni3P solid solution,” in Lunar and Planetary Science XXXI, Abstract 1564, Lunar and Planetary Institute, Houston (CD-ROM).Google Scholar
Skála, R. and Frýda, J. (1996). “Schreibersite from the Vicenice iron: Rietveld crystal structure refinement—A preliminary report,” Lunar and Planetary Science XXVII, 1211–1212.Google Scholar
Skála, R. and Frýda, J. (1999). “Nickel-dominant schreibersite from Vicenice iron,” in Lunar and Planetary Science XXX, Abstract 1334, Lunar and Planetary Institute, Houston (CD-ROM).Google Scholar
Skála, R., Frýda, J., and Sekanina, J. (2000). “Mineralogy of the Vicenice octahedrite,” J. Czech Geol. Soc.ZZZZZZ 45, 175192.Google Scholar
Vogel, R.and Baur, H. (1931). “Über das ternäre System Eisen–Nickel–Phosphor,” Arch. Eisenhüttenwes. AREIAT 5, 269278. acn, AREIAT Google Scholar
Yvon, K., Jeitschko, W., and Parthé, E. (1977). “LAZY PULVERIX, a computer program for calculating X-ray and neutron diffraction powder patterns,” J. Appl. Crystallogr. JACGAR 10, 7374. acr, JACGAR CrossRefGoogle Scholar