Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T16:43:50.141Z Has data issue: false hasContentIssue false

Pearlitic reaction in Cu-10wt%Al alloy with Ag additions

Published online by Cambridge University Press:  06 March 2012

A. T. Adorno
Affiliation:
Instituto de Química, Departamento de Físico-Química, Universidade Estadual Paulista (UNESP), Caixa Postal 355, 14801-970 Araraquara, São Paulo, Brazil
R. A. G. Silva
Affiliation:
Instituto de Química, Departamento de Físico-Química, Universidade Estadual Paulista (UNESP), Caixa Postal 355, 14801-970 Araraquara, São Paulo, Brazil
V. H. S. Utuni
Affiliation:
Instituto de Química, Departamento de Físico-Química, Universidade Estadual Paulista (UNESP), Caixa Postal 355, 14801-970 Araraquara, São Paulo, Brazil

Abstract

The pearlitic reaction in Cu-10wt%Al alloy with additions of 4, 6, 8, and 10wt%Ag was studied using scanning electron microscopy, energy dispersive X-ray microanalysis, in situ X-ray diffractometry, and microhardness measurements. The results indicated that the presence of Ag changes the pearlitic phase microstructure and its mechanical properties, because of the influence of Ag in the pearlitic phase growth mechanism.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adorno, A.T. and Silva, R.A. G. (2004a). “Thermal behavior of the Cu-10wt.%Al and Cu-10wt.%Al-4wt.%Ag alloys,” J. Therm Anal. Calorim.JTACF7 75, 629635. aoy, JTACF7 CrossRefGoogle Scholar
Adorno, A.T. and Silva, R.A. G. (2004b). “Isothermal decomposition kinetics in the Cu–9%Al–4%Ag alloy,” J. Alloys Compd.JALCEU 375, 128133. jal, JALCEU CrossRefGoogle Scholar
Arruda, G.J., Adorno, A.T., Benedetti, A.V., Fernandez, J., and Guilemany, J.M. (1997). “Influence of silver additions on the structure and phase transformation of the Cu-13wt.%Al alloy,” J. Mater. Sci.JMTSAS 32, 62996303. jmt, JMTSAS CrossRefGoogle Scholar
Certified Scientific Software (1992). SPEC (Computer Software), Cambridge, Massachusetts.Google Scholar
Coelho, A.A. and Cheary, R.W. (1997). X-ray Line Profile Fitting Program, XFIT, School of Physical Sciences, University of Technology, Sydney, New South Wales, Australia.Google Scholar
Cullity, B.D. (1978). Elements of X-ray Diffraction (Addison-Wesley, Reading, Massachusetts), 2nd ed., p. 411.Google Scholar
Ferreira, F.F., Granado, E., Carvalho, W. Jr., Kycia, S.W., Bruno, D., and Droppa, R. Jr. (2006). “X-ray powder diffraction beamline at D10B of LNLS: application to the Ba2FeReO6 double perovskite,” J. Synchrotron Radiat.JSYRES 13, 4653. jsy, JSYRES CrossRefGoogle Scholar
ICDD (1996). “Powder Diffraction File,” edited by McClune, W. F., International Centre for Diffraction Data, Newtown Square, PA, 19073-3272.Google Scholar
Kulkarni, S.D. (1973). “Thermodynamics of martensitic and eutectoid transformations in the Cu-Al system,” Acta Metall.AMETAR 21, 14611469. ado, AMETAR CrossRefGoogle Scholar
Liu, X.J., Ohnuma, I., Kainuma, R., and Ishida, K. (1998). “Phase equilibria in the Cu-rich portion of the Cu–Al binary system,” J. Alloys Compd.JALCEU 264, 201208. jal, JALCEU CrossRefGoogle Scholar
Murray, J.L. (1985). “The aluminium-copper system,” Int. Met. Rev.IMERDA 30, 211233. imx, IMERDA CrossRefGoogle Scholar
Silva, R.A. G., Cuniberti, A., Stipcich, M., and Adorno, A.T. (2007). “Effect of Ag addition on the martensitic phase of the Cu-10wt.%Al alloy,” Mater. Sci. Eng., AMSAPE3 456, 510. msa, MSAPE3 CrossRefGoogle Scholar