Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T13:48:24.813Z Has data issue: false hasContentIssue false

On two new K2FeF5 forms

Published online by Cambridge University Press:  03 January 2014

Armel Le Bail*
Affiliation:
Laboratoire des Oxydes et Fluorures, CNRS UMR 6010, Université du Maine, avenue O. Messiaen, 72085 Le Mans Cedex 9, France
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Two additional forms of K2FeF5 are disclosed and characterized by powder diffraction. One (form-IV) adopts a new A2MF5 structural type, space group C2/m, a = 13.0919(2) Å, b = 5.7311(1) Å, c = 7.3114(1) Å, β = 118.241(1), and Z = 4, it is obtained from the thermal evolution of form-III, isostructural with Rb2FeF5, space group Pnma, a = 7.3964(2)  Å, b = 5.6779(1) Å, c = 11.5445(3) Å, and Z = 4. Both forms are compared to two previously reported polymorphs. The III → IV transition is topotactic, conserving the same zigzag cis-connected octahedral (FeF5)n2n chains after an ~90° rotation and 1/2b translation of half of them.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babel, D. and Tressaud, A. (1985). “Crystal chemistry of fluorides,” in Inorganic Solid Fluorides, edited by Hagenmuller, P. (Academic Press, New York), pp. 77203.Google Scholar
Bentrup, U. (1991). “M2 I[MIIIF5(H2O)] compounds and their dehydration products-structural aspects (MI = NH4, K, Rb, Cs; MIII = Al, Cr, Fe),” Eur. J. Solid State Inorg. Chem. 28, 13471357.Google Scholar
Bentrup, U., Le Bail, A., Duroy, H., and Fourquet, J. L. (1992). “Polymorphism of CsAlF4. Synthesis and structure of two new crystalline forms,” Eur. J. Solid State Inorg. Chem. 29, 371381.Google Scholar
Brese, N. E. and O'Keefe, M. (1991). “Bond-valence parameters for solids,” Acta Crystallogr. B47, 192197.CrossRefGoogle Scholar
Chelkowski, A. and Wijn, H.P.J. (1995). Halides II (Springer, New York).Google Scholar
Cockcroft, J. K. and Fitch, A. N. (1988). “The solid phases of sulphur hexafluoride by powder neutron diffraction,” Z. Kristallogr. 184, 123145.Google Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1, 108113.Google Scholar
Fourquet, J. L. and Duroy, H. (1993). “K2FeF5: synthesis and crystal structure of a new form,” J. Solid State Chem. 103, 353358.Google Scholar
Fourquet, J. L., Le Bail, A., Duroy, H., and Moron, M. C. (1989). “(NH4)2FeF5 : crystal structures of its α and β forms,” Eur. J. Solid State Inorg. Chem. 26, 435443.Google Scholar
Jacoboni, C., De Pape, R., Poulain, M., Le Marouille, J. Y., and Grandjean, D. (1974). “La structure cristalline de Rb2CrF5 ,” Acta Crystallogr. B30, 26882691.Google Scholar
Laligant, Y., Le Bail, A., Férey, G., Avignant, D., and Cousseins, J. C. (1988). “Determination of the crystal structure of Li2TbF6 from X-ray and neutron powder diffraction. An example of Lithium in fivefold coordination,” J. Solid State Inorg. Chem. 25, 551563.Google Scholar
Le Bail, A. (1993). “β-Ba3AlF9, a complex structure determined from conventional X-ray powder diffraction,” J. Solid State Chem. 103, 287291.Google Scholar
Le Bail, A. (2001). “ESPOIR : a program for solving structures by Monte Carlo from powder diffraction data,” Mat. Sci. Forum 378–381, 6570.Google Scholar
Le Bail, A. (2004). “Monte Carlo indexing with McMaille,” Powder Diffr. 19, 249254.Google Scholar
Le Bail, A. (2005). “Whole powder pattern decomposition methods and applications – a retrospection,” Powder Diffr. 20, 316326.Google Scholar
Le Bail, A. (2008). “Structure solution,” in Principles and Applications of Powder Diffraction, edited by Clearfield, A., Reibenspies, J., and Bhuvanesh, N. (Wiley, New York), pp. 261309.Google Scholar
Le Bail, A. (2009a). “Crystal structure of NaAlF4, a new aristotype,” Powder Diffr. 24, 301305.Google Scholar
Le Bail, A. (2009b). “ Ab initio structure determination of nano-sized δ-KAlF4 with edge-sharing AlF6 octahedra,” Powder Diffr. 24, 185190.Google Scholar
Le Bail, A. and Calvayrac, F. (2006). “Hypothetical AlF3 crystal structures,” J. Solid State Chem. 179, 31593166.Google Scholar
Le Bail, A. and Laval, J. P. (1998). “Synthesis and crystal structure of α-Ba2ZrF8 and Pb2ZrF8 determined ab initio from synchrotron and neutron powder diffraction data,” Eur. J. Solid State Inorg. Chem. 35, 357372.Google Scholar
Le Bail, A., Desert, A., and Fourquet, J. L. (1990a). “Reinvestigation of the structure of K2FeF5 ,” J. Solid State Chem. 84, 408412.Google Scholar
Le Bail, A., Férey, G., Mercier, A. -M., De Kozak, A., and Samouël, M. (1990b). “Structure determination of β and γ-BaAlF5 by X-ray and neutron powder diffraction. A model for the α→β↔γ transitions,” J. Solid State Chem. 89, 282291.Google Scholar
Le Bail, A., Fourquet, J. L., and Bentrup, U. (1992). “τ-AlF3: crystal structure determination from X-ray powder iffraction data. A new MX3 corner-sharing octahedra 3 D network,” J. Solid State Chem. 100, 151159.Google Scholar
Le Bail, A., Cranswick, L. M. D., Adil, K., Altomare, A., Avdeev, M., Cerny, R., Cuocci, C., Giacovazzo, C., Halasz, I., Lapidus, S. H., Louwen, J. N., Moliterni, A., Palatinus, L., Rizzi, R., Schilder, E. C., Stephens, P. W., Stone, K. H., and van Mechelen, J. (2009). “Third structure determination by powder diffractometry round robin (SDPDRR-3),” Powder Diffr. 24, 254262.Google Scholar
PDF (2012). PDF4+ database, K2VO2F3, entry # 04-009-3298. International Centre for Diffraction Data, Newtown Square, PA.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.Google Scholar
Rodriguez-Carvajal, J. (1993). “Recent advances in magnetic-structure determination by neutron powder diffraction,” Physica B, 192, 5569.CrossRefGoogle Scholar
Ryan, R. R., Mastin, S. H., and Reisfeld, M. J. (1971). “The crystal structure of K2VO2F3, a nonlinear dioxovanadium(V) group,” Acta Crystallogr. B27, 12701274.CrossRefGoogle Scholar
Smith, G. S. and Snyder, R. L. (1979). “ F N : a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.Google Scholar
Smrcok, L., Mach, P., and Le Bail, A. (2013). “Decafluorocyclohex-1-ene at 4.2K – crystal structure and theoretical analysis of weak interactions,” Acta Crystallogr. B69, 395404.Google Scholar
Taoudi, A., Mikou, A., and Laval, J. -P. (1996). “Synthesis and characterization of two new ordered crystalline phases close to ThF4-ZrF4 fluoride glasses. II: crystal structure of ThZr2F12 ,” Eur. J. Solid State Inorg. Chem. 33, 10511062.Google Scholar
Vogt, T., Fitch, A. N., and Cockroft, J. K. (1994). “Crystal and molecular structures of rhenium heptafluoride,” Science 263, 12651267.Google Scholar
Supplementary material: File

Le Bail Supplementary Material

Supplementary Material

Download Le Bail Supplementary Material(File)
File 142 KB