Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T14:18:07.441Z Has data issue: false hasContentIssue false

Neutron diffraction study on crystal structure and phase transformation in Ni-Mn-Ga ferromagnetic shape memory alloys

Published online by Cambridge University Press:  01 March 2012

D. Y. Cong
Affiliation:
Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, Shenyang, 110004, China
Y. D. Wang
Affiliation:
Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, Shenyang, 110004, China
J. Z. Xu
Affiliation:
Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, Shenyang, 110004, China
L. Zuo
Affiliation:
Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, Shenyang, 110004, China
P. Zetterström
Affiliation:
Department of Structural Chemistry, Stockholm University, S-10691 Stockholm, Sweden
R. Delaplane
Affiliation:
The Studsvik Neutron Research Laboratory (NFL), Uppsala University, S-61182 Nyköping, Sweden

Abstract

Crystal structure and phase transformation behaviors in two Ni-Mn-Ga ferromagnetic shape memory alloys (FSMAs) with compositions of Ni48Mn30Ga22 and Ni53Mn25Ga22 (at. %) as a function of temperature were investigated by in situ neutron diffraction experiments. Neutron diffraction technique proves to be highly efficient in characterizing structural transformation in Ni-Mn-Ga FSMAs, which consist of nearby elements in the periodic table. Our neutron results show that Ni48Mn30Ga22 has a cubic, L21 Heusler structure from 373 to 293 K. Its crystal structure changes into a seven-layered orthorhombic martensitic structure when cooled to 243 K, and no further transformation is observed upon cooling to 19 K. Neutron diffraction results also show that Ni53Mn25Ga22 has a tetragonal I4/mmm martensitic structure from 20 to 403 K. A pre-transformation around room temperature is observed from an abrupt jump in unit-cell volume of Ni53Mn25Ga22, which corresponds with an endothermic peak detected in a heated DSC curve.

Type
Representative Papers from the Chinese XRD 2006 Conference
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cong, D. Y., Wang, Y. D., Zetterström, P., Peng, R. L., Delaplane, R., Zhao, X., and Zuo, L. (2005a). “Crystal structures and textures of hot forged Ni48Mn30Ga22 alloy investigated by neutron diffraction technique,” Mat. Sci. Technol.ZZZZZZ 21, 14121416.CrossRefGoogle Scholar
Cong, D. Y., Zetterström, P., Wang, Y. D., Delaplane, R., Peng, R. L., Zhao, X., and Zuo, L. (2005b). “Crystal structure and phase transformation in Ni53Mn25Ga22 shape memory alloy from 20 K to 473 K,” Appl. Phys. Lett.APPLAB10.1063/1.2043250 87, 111906.Google Scholar
McCusker, L. B., Von Dreele, R. B., Cox, D. E., Louër, D., and Scardi, P. (1999). “Rietveld refinement guidelines,” J. Appl. Crystallogr.JACGAR10.1107/S0021889898009856 32, 3650.Google Scholar
Murray, S. J., Marioni, M. A., Kukla, A. M., Robinson, J., O’Handley, R. C., and Allen, S. M. (2000). “Large field induced strain in single crystalline Ni-Mn-Ga ferromagnetic shape memory alloy,” J. Appl. Phys.JAPIAU10.1063/1.372518 87, 57745776.Google Scholar
Pons, J., Chernenko, V. A., Santamarta, R., and Cesari, E. (2000). “Crystal structure of martensitic phases in Ni-Mn-Ga shape memory alloys,” Acta Mater.ACMAFD10.1016/S1359-6454(00)00130-0 48, 30273038.CrossRefGoogle Scholar
Sozinov, A., Likhachev, A. A., Lanska, N., and Ullakko, K. (2002). “Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase,” Appl. Phys. Lett.APPLAB10.1063/1.1458075 80, 17461748.CrossRefGoogle Scholar
Wang, W. H., Wu, G. H., Chen, J. L., Gao, S. X., Zhan, W. S., Wen, G. H., and Zhang, X. X. (2001). “Intermartensitic transformation and magnetic-field-induced strain in Ni52Mn24.5Ga23.5 single crystals,” Appl. Phys. Lett.APPLAB10.1063/1.1396820 79, 11481150.CrossRefGoogle Scholar
Wang, Y. D., Cong, D. Y., Peng, R. L., Zetterström, P., Zhang, Z. F., Zhao, X., and Zuo, L. (2006). “Textures and compressive properties of ferromagnetic shape-memory alloy Ni48Mn25Ga22Co 5 prepared by isothermal forging process,” J. Mater. Res.JMREEE 21, 691697.Google Scholar
Wedel, B., Suzuki, M., Murakami, Y., Wedel, C., Suzuki, T., Shindo, D., and Itagaki, K. (1999). “Low temperature crystal structure of Ni-Mn-Ga alloys,” J. Alloys Compd.JALCEU10.1016/S0925-8388(99)00198-X 290, 137143.Google Scholar
Zheludev, A., Shapiro, S. M., Wochner, P., and Tanner, L. E. (1996). “Precursor effects and premartensitic transformation in Ni2MnGa,” Phys. Rev. BPRBMDO10.1103/PhysRevB.54.15045 54, 1504515050.CrossRefGoogle ScholarPubMed