Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-01T17:18:57.899Z Has data issue: false hasContentIssue false

Microstructure anisotropy in CuO powders

Published online by Cambridge University Press:  06 March 2012

A. E. Bianchi
Affiliation:
Lanadi e IFLP, Departamento de Física, Facultad de encias Exactas, Universidad Nacional de La Plata, CC67-1900, La Plata, Argentina
L. Montenegro
Affiliation:
Lanadi e IFLP, Departamento de Física, Facultad de encias Exactas, Universidad Nacional de La Plata, CC67-1900, La Plata, Argentina
R. Viña
Affiliation:
Lanadi e IFLP, Departamento de Física, Facultad de encias Exactas, Universidad Nacional de La Plata, CC67-1900, La Plata, Argentina
G. Punte
Affiliation:
Lanadi e IFLP, Departamento de Física, Facultad de encias Exactas, Universidad Nacional de La Plata, CC67-1900, La Plata, Argentina

Abstract

An anisotropic line broadening study of CuO is reported. X-ray powder diffraction line width modifications observed are modeled when comparing data coming from (1) commercial analytical grade CuO, (2) energetic ball milling sample for 1 h, and (3) samples prepared by thermally annealing the ball milled sample at various temperatures. X-ray powder diffraction data from commercial and produced samples were analyzed by the Rietveld method using a pseudo-Voigt function. Different assumptions including size and strain anisotropy were tried to improve pattern fitting. An anisotropic strain broadening, modeled using Stephens’ approximation, yielded the best fit, thus indicating that strain anisotropy is the main source of the departure from a smooth function of line broadening as a function of 2θ observed in all samples.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Águila, G., Gracia, F., Cortés, J., and Araya, P. (2008). “Effect of copper species and the presence of reaction products on the activity of methane oxidation on supported CuO catalysts,” Appl. Catal., BACBEE3 77, 325338. 9cs, ACBEE3 CrossRefGoogle Scholar
A˚sbrink, S. and Norrby, L.-J. (1970). “A refinement of the crystal structure of copper(II) oxide with a discussion of some exceptional e.s.d.’s,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.ACBCAR 26, 815. acb, ACBCAR CrossRefGoogle Scholar
Bianchi, A.E., Stewart, S., Punte, G., Plivelic, T.S., and Torriani, I.L. I. (2002). “Interface structure of ball milled CuO: a SAXS/WAXS temperature dependent study,” in Activity Report-LNLS, pp. 43–44.Google Scholar
Birringer, R. (1989). “Nanocrystalline materials,” Mater. Sci. Eng., AMSAPE3 117, 3343. msa, MSAPE3 CrossRefGoogle Scholar
Filippetti, A. and Fiorentini, V. (2005). “Magnetic ordering in CuO from first principles: a cuprate antiferromagnet with fully three-dimensional exchange interactions,” Phys. Rev. Lett.PRLTAO 95, 086405. prl, PRLTAO CrossRefGoogle ScholarPubMed
Järvinen, M. (1993). “Application of symmetrized harmonics expansion to correction of the preferred orientation effect,” J. Appl. Crystallogr.JACGAR 26, 525531. acr, JACGAR CrossRefGoogle Scholar
Keblinski, P., Wolf, D., Phillpot, S.R., and Gleiter, H. (1999). “Structure of grain boundaries in nanocrystalline palladium by molecular dynamics simulation,” Scr. Mater.SCMAF7 41, 631636. scz, SCMAF7 CrossRefGoogle Scholar
Langford, J.I. and Louër, D. (1991). “High-resolution powder diffraction studies of copper(II) oxide,” J. Appl. Crystallogr.JACGAR 24, 149155. acr, JACGAR CrossRefGoogle Scholar
Liu, Y., Liao, L., Li, J., and Pan, C. (2007). “From copper nanocrystalline to CuO nanoneedle array: synthesis, growth mechanism, and properties,” J. Phys. Chem. CJPCCCK 111, 50505056. ct2, JPCCCK CrossRefGoogle Scholar
Mishra, S.R., Losby, J., Dubenko, I., Roy, S., Ali, N., and Marasinghe, K. (2004). “Magnetic properties of mechanically milled nanosized cupric oxide,” J. Magn. Magn. Mater.JMMMDC 279, 111117. jmm, JMMMDC CrossRefGoogle Scholar
Mishra, S.R., Dubenko, I., Khan, M., Young, T., Ganegoda, H., Ali, N., and Marasinghe, G.K. (2006). “Exchange-coupled FeNi-X (X=CuO, NiO, and CoO) nanocomposites prepared via ball milling,” IEEE Trans. Magn.IEMGAQ 42, 28082811. emg, IEMGAQ CrossRefGoogle Scholar
Palkar, V.R., Ayyub, P., Chattopadhyay, S., and Multani, M. (1996). “Size-induced structural transitions in the Cu-O and Ce-O systems,” Phys. Rev. BPRBMDO 53 21672170. prb, PRBMDO CrossRefGoogle ScholarPubMed
Rodríguez-Carvajal, J. (1990). “FullProf: A program for Rietveld refinement and pattern matching analysis,” Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, p. 127.Google Scholar
Rodríguez-Carvajal, J. (1993). “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica BPHYBE3 192, 5569. phb, PHYBE3 CrossRefGoogle Scholar
Rodríguez-Carvajal, J. (2001). “Recent developments of the program FULLPROF,” in IUCr Commission on Powder Diffraction Newsletter, No. 26, pp. 12–19.Google Scholar
Rubio-Bollinger, G., Bahn, S.R., Agraït, N., Jacobsen, K.W., and Vieira, S. (2001). “Mechanical properties and formation mechanisms of a wire of single gold atoms,” Phys. Rev. Lett.PRLTAO 87, 026101. prl, PRLTAO CrossRefGoogle Scholar
Scherrer, P. (1918). “Zsigmondy’s Kolloidchemie,” in Nachrichten der Göttinger Gesellschaft, Vol. 98, 3rd ed., p. 394.Google Scholar
Siegel, R.W. and Thomas, G.J. (1992). “Grain boundaries in nanophase materials,” UltramicroscopyULTRD6 40, 376384. ult, ULTRD6 CrossRefGoogle Scholar
Skumryev, V., Stoyanov, S., Zhang, Y., Hadjipanayis, G., Givord, D., and Nogués, J. (2003). “Beating the superparamagnetic limit with exchange bias,” Nature (London)NATUAS 423, 850853. nat, NATUAS CrossRefGoogle ScholarPubMed
Stephens, P.W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr.JACGAR 32, 281289. acr, JACGAR CrossRefGoogle Scholar
Stern, E.A., Siegel, R.W., Newville, M., Sanders, P.G., and Haskel, D. (1995). “Are nanophase grain boundaries anomalous?,” Phys. Rev. Lett.PRLTAO 75, 38743877. prl, PRLTAO CrossRefGoogle ScholarPubMed
Van Swygenhoven, H., Farkas, D., and Caro, A. (2000). “Grain-boundary structures in polycrystalline metals at the nanoscale,” Phys. Rev. BPRBMDO 62, 831838. prb, PRBMDO CrossRefGoogle Scholar
Yamada, H., Zheng, X.-G., Soejima, Y., and Kawaminami, M. (2004). “Lattice distortion and magnetolattice coupling in CuO,” Phys. Rev. BPRBMDO 69, 104104. prb, PRBMDO CrossRefGoogle Scholar
Wang, K.-Y., Spinu, L., He, J., Zhou, W., Wang, W., and Tang, J. (2002). “Phase transition and magnetotransport properties of ball-milled half-metallic CrO2,” J. Appl. Phys.JAPIAU 91, 82048206. jap, JAPIAU CrossRefGoogle Scholar
Wang, N., Palumbo, G., Zhirui, W., Erb, U., and Aust, K.T. (1993). “On the persistence of fourfold triple line nodes in nanostructured materials,” Scr. Metall. Mater.SCRMEX 28, 253256. smm, SCRMEX CrossRefGoogle Scholar
Zhang, J., Liu, J., Peng, Q., Wang, X., and Li, Y. (2006). “Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors,” Chem. Mater.CMATEX 18, 867871. cma, CMATEX CrossRefGoogle Scholar
Zhang, X.X., Wei, H.L., Zhang, Z.Q., and Zhang, L. (2001). “Anisotropic magnetocaloric effect in nanostructured magnetic clusters,” Phys. Rev. Lett.PRLTAO 87, 157203. prl, PRLTAO CrossRefGoogle ScholarPubMed
Zhao, Y.H., Lu, K., and Zhang, K. (2002). “Microstructure evolution and thermal properties in nanocrystalline Cu during mechanical attrition,” Phys. Rev. BPRBMDO 66, 085404. prb, PRBMDO CrossRefGoogle Scholar