Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-14T11:17:48.786Z Has data issue: false hasContentIssue false

Implications of the solubility of trivalent lanthanides in AAl2O4 (A=Ca, Sr, and Ba) for their role in phosphors

Published online by Cambridge University Press:  01 March 2012

Paul J. Saines
Affiliation:
School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
Brendan J. Kennedy
Affiliation:
School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia

Abstract

The technique of standard addition in combination with powder X-ray diffraction was used to identify and quantify the amount of Ln3+ segregating into secondary phases from Ln3+doped alkaline earth aluminates. Results indicate that Ln3+ ions are more soluble in CaAl2O4 than SrAl2O4 and BaAl2O4, with this being rationalized by the structural details of the A sites. These results indicate that the enhancement of the luminescence afterglow obtained by doping AAl2O4:Eu2+ samples with Ln3+ ions is a result of much lower doping levels than previously thought.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitasalo, T., Deren, P., Hölsä, J., Junger, H., Krupa, J.-C., Lastussari, M., Legendziewicz, J., Niitykoski, J., and Strek, W. (2003). “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. JSSCBI 10.1016/S0022-4596(02)00194-9 171, 114122.CrossRefGoogle Scholar
Hörkner, W. and Müller-Buschbaum, H. (1976). “Zur kristallstruktur von CaAl2O4,” J. Inorg. Nucl. Chem. JINCAO 10.1016/0022-1902(76)80011-5 38, 983984.CrossRefGoogle Scholar
Huang, S.-Y., von der Muehll, R., Ravez, J., and Couzi, M. (1994a). “Phase transition and symmetry in BaAl2O4,” Ferroelectrics FEROA8 159, 127132.Google Scholar
Huang, S.-Y., von der Muehll, R., Ravez, J., and Couzi, M. (1994b). “Phase transition and symmetry in BaAl2O4,” J. Solid State Chem. JSSCBI 110, 97105.CrossRefGoogle Scholar
Kanke, Y. and Navrotsky, A. (1998). “A calorimetric study of the lanthanide aluminium oxides and the lanthanide gallium oxides: Stability of the perovskites and the garnets,” J. Solid State Chem. JSSCBI 141, 424436.CrossRefGoogle Scholar
Matsuzawa, T., Aoki, Y., Takeuchi, N., and Murayama, Y. (1996). “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+,” J. Electrochem. Soc. JESOAN 10.1149/1.1837067 143, 26702673.CrossRefGoogle Scholar
Müeller-Buschbaum, H. and Schulze, A. R. (1981). “Zur struktur von monoklinem SrAl2O4,” Z. Anorg. Allg. Chem. ZAACAB 10.1002/zaac.19814750423 475, 205210.Google Scholar
Nakamura, T., Kaiya, K., Takahashi, N., Matsuzawa, T., Ohta, M., Rowlands, C. C., Smith, G. M., and Riedi, P. C. (2001). “High frequency epr investigations of gadolinium(III)-doped strontium aluminates,” Phys. Chem. Chem. Phys. PPCPFQ 3, 17211723.CrossRefGoogle Scholar
Požek, M., Dulčić, A., Paar, D., Williams, G. V. M., and Krämer, S. (2001). “Transport and microwave study of superconducting and magnetic RuSr2EuCu2O8,” Phys. Rev. B PRBMDO 10.1103/PhysRevB.64.064508 64, 064508/064501–7.CrossRefGoogle Scholar
Riley, D. P. (1960). “Background scattering in powder photographs,” in Physics in Industry: X-ray diffraction by polycrystalline materials, edited by Peiser, H. S., Rooksby, H. P., and Wilson, A. J. C. (Chapman and Hall, London), Vol. 1, pp. 430437.Google Scholar
Saines, P. J., Elcombe, M. M., and Kennedy, B. J. (2006). J. Solid State Chem. 179, 613622.CrossRefGoogle Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. ACACBN 10.1107/S0567739476001551 A32, 751767.CrossRefGoogle Scholar
Shulze, A. R. and Müeller-Buchbaum, H. (1981). “Compound formation MeO:M2O3. IV. Structure of monoclinic strontium aluminium oxide (SrAl2O4),” Z. Anorg. Allg. Chem. ZAACAB 10.1002/zaac.19814750423 475, 205210.Google Scholar
Skakle, J. M. S. and Herd, R. (1999). “Crystal chemistry of (Re,A)2M3O7 compounds (Re=Y, lanthanide; A=Ba, Sr, Ca; M=Al, Ga),” Powder Diffr. PODIE2 14, 195202.CrossRefGoogle Scholar
Smirnov, Y. E., Zvereva, I. A., and Zvinchuk, R. A. (2002). “Cation distribution and interatomic interactions in oxides with heterovalent isomorphism: V. Complex aluminates LnCaAl3O7,” Russ. J. Gen. Chem. 72, 18481852.CrossRefGoogle Scholar
Snyder, R. and Bish, D. L. (1989). “Quantitative analysis by X-ray powder diffraction,” in Modern Powder Diffraction, edited by Bish, D. L. and Post, J. E. (Mineralogical Society of America, Washington), Vol. 20, pp. 101144.CrossRefGoogle Scholar
Takeyama, T., Nakamura, T., Takahashi, N., and Ohta, M. (2004). “Electron paramagnetic resonance studies on the defects formed in the Dy(III)-doped SrAl2O4,” Solid State Sci. SSSCFJ 6, 345348.CrossRefGoogle Scholar
Yamamoto, H. and Matsuzawa, T. (1997). “Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+,” J. Lumin. JLUMA8 72–74, 287289.CrossRefGoogle Scholar