Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T15:25:46.386Z Has data issue: false hasContentIssue false

Grain size distribution of nanocrystalline systems

Published online by Cambridge University Press:  01 March 2012

Paolo Scardi
Affiliation:
Department of Materials Engineering and Industrial Technologies, University of Trento, via Mesiano 77, 38050 Trento, Italy
Matteo Leoni
Affiliation:
Department of Materials Engineering and Industrial Technologies, University of Trento, via Mesiano 77, 38050 Trento, Italy
Diego G. Lamas
Affiliation:
CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J. B. de La Salle 4397, (1603) Villa Martelli, Pcia. de Buenos Aires, Argentina
Edgardo D. Cabanillas
Affiliation:
CONICET-Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Gral. Paz 1499 (1650) San Martín, Pcia. de Buenos Aires, Argentina

Abstract

The diffraction pattern of nanocrystalline Ce0.9Zr0.1O2 was analyzed by whole powder pattern modeling, a recently proposed method for the study of line broadening. The main result in this typical case of study—the crystalline domain size distribution—matches closely the corresponding information obtained by transmission electron microscopy. Further information on nature and content of lattice defects is also discussed.

Type
Invited Articles
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cabañas, A., Darr, J. A., Lester, E., and Poliakoff, M. (2001). “Continuous hydrothermal synthesis of inorganic materials in a near-critical water flow reactor; The one-step synthesis of nano-particulate Ce1−xZrxO2 (x=0–1) solid solutions,” J. Mater. Chem.JMACEP 11, 561568.CrossRefGoogle Scholar
Enzo, S., Delogu, F., Frattini, R., Primavera, A., and Trovarelli, A. (2000). “Structural characterization of Ceria-Zirconia powders catalysts prepared by high-energy mechanical milling: A neutron diffraction study,” J. Mater. Res.JMREEE 15, 15381545.CrossRefGoogle Scholar
Kašpar, J., Fornasiero, P., Balducci, G., Di Monte, R., Hickey, N., and Sergo, V. (2003). “Effect of ZrO2 content on textural and structural properties of CeO2-ZrO2 solid solutions made by citrate complexation route,” Inorg. Chim. ActaICHAA3 349, 217226.CrossRefGoogle Scholar
Klug, H. P. and Alexander, L. E. (1974). X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. (John Wiley and Sons, New York).Google Scholar
Krivoglaz, M. A. (1996). X-Ray and Neutron Diffraction in Nonideal Crystals (Springer-Verlag, Berlin).CrossRefGoogle Scholar
Lamas, D. G., Juárez, R. E., Lascalea, G. E., and Walsöe de Reca, N. E. (2001). “Synthesis of compositionally homogeneous, nanocrystalline ZrO2–35 mol % CeO2 powders by gel-combustion,” J. Mater. Sci. Lett.JMSLD5 20, 14471449.CrossRefGoogle Scholar
Lamas, D. G., Lascalea, G. E., Juárez, R. E., Djurado, E., Pérez, L., and Walsöe de Reca, N. E. (2003). “Metastable forms of the tetragonal phase in compositionally homogeneous, nanocrystalline zirconia-ceria powders synthesised by gel-combustion,” J. Mater. Chem.JMACEP 13, 904910.CrossRefGoogle Scholar
Lamas, D. G., Fuentes, R. O., Fábregas, I. O., Fernández de Rapp, M. E., Lascalea, G. E., Casanova, J. R., Walsöe de Reca, N. E., and Craievich, A. F. (2005). “Synchrotron X-ray diffraction study of the tetragonal-cubic phase boundary of nanocrystalline ZrO2–CeO2 synthesised by a gel-combustion process,” J. Appl. Crystallogr. JACGAR (submitted).Google Scholar
Langford, J. I., Louër, D., and Scardi, P. (2000). “Effect of a crystallite size distribution on X-ray diffraction line profiles and whole-powder-pattern fitting,” J. Appl. Crystallogr.JACGAR10.1107/S002188980000460X 33, 964974.CrossRefGoogle Scholar
Larrondo, L., Vidal, M. A., Irigoyen, B., Amadeo, N., Lamas, D. G., Fábregas, I. O., Lascalea, G. E., Walsöe de Reca, N. E., and Craievich, A. F. (2005). “Preparation and characterization of Ce∕Zr mixed oxides and their use as catalysts for the direct oxidation of dry CH4,” Catal. TodayCATTEA (in press).CrossRefGoogle Scholar
Leoni, M. and Scardi, P. (2004a). “Nanocrystalline domain size distributions from powder diffraction data,” J. Appl. Crystallogr.JACGAR 37, 629634.CrossRefGoogle Scholar
Leoni, M. and Scardi, P. (2004b). “Grain surface relaxation effects in powder diffraction,” in Diffraction Analysis of the Microstructure of Materials, edited by Mittemeijer, E. J. and Scardi, P.Springer Series in Materials Science, Vol. 68 (Springer-Verlag, Berlin).CrossRefGoogle Scholar
Leoni, M., Confente, T., and Scardi, P. (2005). “PM2K: A flexible program implementing Whole Powder Pattern Modelling,” Z. Kristallogr.ZEKRDZ (in press).Google Scholar
Luo, M.-F., Lu, G.-L., Zheng, X.-M., Zhong, Y. L., and Wu, T. H. (1998). “Redox properties of CexZr1−xO2 mixed oxides prepared by the sol-gel method,” J. Mater. Sci. Lett.JMSLD5 17, 15531557.CrossRefGoogle Scholar
Mittemeijer, E. J. and Scardi, P. (editors) (2004). Diffraction Analysis of the Microstructure of Materials, Springer Series in Materials Science, Vol. 68 (Springer-Verlag, Berlin).CrossRefGoogle Scholar
Rao, G. R. and Sahu, H. R. (2001). “XRD and UV-Vis diffuse reflectance analysis of CeO2-ZrO2 solid solutions synthesized by combustion method,” Proc. Indian Acad. Sci. (Chem. Sci.) 113, 651658.Google Scholar
Rossignol, S., Gérard, F., and Duprez, D. (1999). “Effect of the preparation method on the properties of zirconia-ceria materials,” J. Mater. Chem.JMACEP10.1039/a900536f 9, 16151620.CrossRefGoogle Scholar
Scardi, P. (2005). “Microstructural properties: Lattice defects and domain size effects,” in Powder Diffraction: Theory and Practice, edited by Dinnebier, R. E. and Billinge, S. (The Royal Chemistry Society, Cambridge, UK). (in press).Google Scholar
Scardi, P. and Leoni, M. (2001). “Diffraction line profiles from polydisperse crystalline systems,” Acta Crystallogr., Sect. A: Found. Crystallogr.ACACEQ 57, 604613.CrossRefGoogle ScholarPubMed
Scardi, P. and Leoni, M. (2002). “Whole Powder Pattern Modelling,” Acta Crystallogr., Sect. A: Found. Crystallogr.ACACEQ 58, 190200.CrossRefGoogle ScholarPubMed
Scardi, P. and Leoni, M. (2004). “Whole Powder Pattern Modelling: Theory and applications,” in Diffraction Analysis of the Microstructure of Materials, edited by Mittemeijer, E. J. and Scardi, P.Springer Series in Materials Science, Vol. 68 (Springer-Verlag, Berlin).CrossRefGoogle Scholar
Trovarelli, A. (editor) (2002). Catalysis by Ceria and Related Materials (Imperial College Press, London).CrossRefGoogle Scholar
Warren, B. E. (1969). X-ray Diffraction (Addison-Wesley, Reading, MA).Google Scholar
Wilkens, M. (1970a). “The determination of density and distribution of dislocations in deformed single crystals from broadened X-ray diffraction profiles,” Phys. Status Solidi APSSABA 2, 359370.CrossRefGoogle Scholar
Wilkens, M. (1970b). “Theoretical aspects of kinematical X-ray diffraction profiles from crystals containing dislocation distributions,” in Fundamental Aspects of Dislocation Theory, edited by Simmons, J. A., de Wit, R., and Bullough, R. [Natl. Bur. Stand., (U.S.) Spec. Publ. No 317, Washington, D.C.], Vol. 2.Google Scholar
Yashima, M., Ohtake, K., Kakihana, M., and Yoshimura, M. (1994). “Synthesis of metastable tetragonal (t ) zirconia-ceria solid solutions by the polymerized complex method,” J. Am. Ceram. Soc.JACTAW10.1111/j.1151-2916.1994.tb04677.x 77, 27732776.CrossRefGoogle Scholar
Young, R. A. (editor) (1993). The Rietveld Method (Oxford University Press, Oxford, UK).CrossRefGoogle Scholar