Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T05:29:51.048Z Has data issue: false hasContentIssue false

Formation studies of NiO by X-ray powder diffraction

Published online by Cambridge University Press:  06 March 2012

C. M. R. Remédios
Affiliation:
Departamento de Física, Universidade Federal do Pará, Santarém, Pará, Brazil
J. M. Sasaki
Affiliation:
Departamento de Física, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil

Abstract

Nickel oxide nanopowder was prepared by a simple method and analyzed by X-ray powder diffraction. A solution of gelatin and NiCl2⋅6H2O salt were prepared and sintered in sequence. Using a synchrotron light source for X-ray powder diffraction analysis, the synthesized material was characterized as a function of temperature in the interval of 375 to 600 °C. Results from thermogravimetric analysis confirm the temperature loss of the organic substance during the sintering process and show that the temperature for NiO attainment is 600 °C.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcock, C.B., Li, B., Fergus, J.W., and Wang, L. (1992). “New electrochemical sensors for oxygen determination,” Solid State IonicsSSIOD3 53–56, 3943. ssi, SSIOD3 CrossRefGoogle Scholar
Balachandran, U., Siegel, R.W., Liao, Y.X., and Askew, T.R. (1995). “Synthesis, sintering, and magnetic properties of nanophase Cr2O3,” Nanostruct. Mater.NMAEE7 5, 505512. nsm, NMAEE7 CrossRefGoogle Scholar
Berchmans, S., Gomathi, H., and Rao, G.P. (1995). “Electro-oxidation of alcohols and sugars catalysed on a nickel oxide modified glassy carbon electrode,” J. Electroanal. Chem.JECHES 394, 267270. jea, JECHES CrossRefGoogle Scholar
Biju, V. and Khadar, M.A. (2001). “DC conductivity of consolidated nanoparticles of NiO,” Mater. Res. Bull.MRBUAC 36, 2133. mrb, MRBUAC CrossRefGoogle Scholar
Chiang, Y.-M., Lavik, E.B., and Blom, D.A. (1997). “Defect thermodynamics and electrical properties of nanocrystalline oxides: pure and doped CeO2,” Nanostruct. Mater.NMAEE7 9, 633642. nsm, NMAEE7 CrossRefGoogle Scholar
Kawabata, A., Yoshinaka, M., Hirota, K., and Yamaguchi, O. (1995). “Hot isostatic pressing and characterization of sol-gel-derived chromium(III) oxide,” J. Am. Ceram. Soc.JACTAW 78, 22712273. jac, JACTAW CrossRefGoogle Scholar
Kunz, H.R. and Pandolfo, J.W. (1992). “The effects of nickel oxide cathode dissolution on molten carbonate fuel cell life,” J. Electrochem. Soc.JESOAN 139, 15491556. jes, JESOAN CrossRefGoogle Scholar
Makkus, R.C., Hemmes, K., and de Wit, J.H. W. (1994). “A comparative study of NiO(Li), LiFeO2, and LiCoO2 porous cathodes for molten carbonate fuel cells,” J. Electrochem. Soc.JESOAN 141, 34293438. jes, JESOAN CrossRefGoogle Scholar
Marquardt, P. (1987). “Quantum-size affected conductivity of mesoscopic metal particles,” Phys. Lett. APYLAAG 123, 365368. pla, PYLAAG CrossRefGoogle Scholar
Marquardt, P., Nimtz, G., and Mühlschlegel, B. (1988). “On the quasi-static conductivity of sub-micrometer crystals,” Solid State Commun.SSCOA4 65, 539542. ssc, SSCOA4 CrossRefGoogle Scholar
Medeiros, A.M. L., Miranda, M.A. R., de Menezes, A.S., Jardim, P.M., da Silva, L.R. D., Gouveia, S.T., and Sasaki, J.M. (2004). “Synthesis and characterization of Cr2O3 nanoparticles obtained by gelatin,” J. Metastable Nanocryst. Mater.ZZZZZZ 20–21, 399404. ak4, ZZZZZZ Google Scholar
Palchik, O., Avivi, S., Pinkert, D., and Gedanken, A. (1999). “Preparation and characterization of Ni/NiO composite using microwave irradiation and sonication,” Nanostruct. Mater.NMAEE7 11, 415420. nsm, NMAEE7 CrossRefGoogle Scholar
Suryanarayana, C. (1994). “Structure and properties of nanocrystalline materials,” Bull. Mater. Sci.BUMSDW 17, 307346. bms, BUMSDW CrossRefGoogle Scholar
Tsuzuki, T. and McCormick, P.G. (2000). “Synthesis of Cr2O3 nanoparticles by mechanochemical processing,” Acta Mater.ACMAFD 48, 27952801. acz, ACMAFD CrossRefGoogle Scholar
Vollath, D., Szabó, D.V., and Willis, J.O. (1996). “Magnetic properties of nanocrystalline Cr2O3 synthesized in a microwave plasma,” Mater. Lett.MLETDJ 29, 271279. mal, MLETDJ CrossRefGoogle Scholar