Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T02:46:37.187Z Has data issue: false hasContentIssue false

The early hydration and the set of Portland cements: In situ X-ray powder diffraction studies

Published online by Cambridge University Press:  01 March 2012

M. Merlini*
Affiliation:
Dipartimento di Scienze della Terra “Ardito Desio”, Università degli studi di Milano, Via Botticelli 23, 20133 Milano, Italy
G. Artioli
Affiliation:
Dipartimento di Scienze della Terra “Ardito Desio”, Università degli studi di Milano, Via Botticelli 23, 20133 Milano, Italy
C. Meneghini
Affiliation:
Dipartimento di Fisica “E. Amaldi”, Università di Roma Tre, Via della Vasca Navale, Roma, Italy
T. Cerulli
Affiliation:
Research and Development Laboratory, MAPEI S.p.A., Via Cafiero, Milano, Italy
A. Bravo
Affiliation:
Research and Development Laboratory, MAPEI S.p.A., Via Cafiero, Milano, Italy
F. Cella
Affiliation:
Research and Development Laboratory, MAPEI S.p.A., Via Cafiero, Milano, Italy
*
a)Presently at ESRF, European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP220, 38043, Grenoble, France.

Abstract

The hydration of ordinary Portland cements (OPC) was investigated with X-ray powder diffraction (XRPD) technique, mainly using synchrotron radiation. In situ experiments were performed during the first hours of hydration to study the evolution of the crystalline phases in the system. The hydration was carried out with pure water and in the presence of additives such as superplasticizers and setting accelerating agents. As soon as water is added to the cement, ettringite crystallizes. Its evolution appears to be very complex, and lattice parameters change as a function of setting time, indicating a possible chemical evolution of ettringite with time and as a function of pH. CSH (Ca-Si-hydrate) forms after a few hours from the beginning of hydration. CSH can be indirectly quantified and its evolution studied.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitcin, P. C., Jiang, S., Kim, B. G., Nkinamubanzi, P. C., and Petrov, N. (2001). “L’interaction ciment/superplastifiant. Cas des polysulfonates, ” Bulletin des Laboratoires des Ponts et Chaussées, No. 233, Juillet-Août, pp. 8797.Google Scholar
Barnes, P., Colston, S. L., Jupe, A. C., Jacques, S. D. M., Attfield, M., Pisula, R., Morgan, S., Hall, C., Livesey, P., and Lunt, S. (2002). “The use of synchrotron sources in the study of cement materials, ” in Structure and Performance of Cements, edited by Bensted, J. and Barnes, P., 2nd ed. (Spon, London), pp. 477498.CrossRefGoogle Scholar
Bensted, J., and Barnes, P. (Eds.) (2002). Structure and Performance of Cements, 2nd ed. (Spon, London).Google Scholar
Clark, S. M., and Barnes, P. (1995). “A comparison of laboratory, synchrotron and neutron diffraction for the real time study of cement hydration, ” Cem. Concr. Res.CCNRAI 25, 639646.CrossRefGoogle Scholar
Damasceni, A., Dei, L., Fratini, E., Ridi, F., Chen, S. H., and Baglioni, P. (2002). “A novel approach based on differential scanning calorimetry applied to the study of tricalcium silicate hydration kinetics, ” J. Phys. Chem. BJPCBFK10.1021/jp020211l 106, 1157211578.Google Scholar
Fratini, E., Chen, S. H., Baglioni, P., and Bellissent-Funel, M.-C. (2002). “Quasi-elastic neutron scattering study of translational dynamics of hydration water in tricalcium silicate, ” J. Phys. Chem. BJPCBFK10.1021/jp010536m 106, 158166.CrossRefGoogle Scholar
Hewlett, P. C. (Ed.). (2003). Lea’s Chemistry of Cement and Concrete (Elsevier, Amsterdam).Google Scholar
Jupe, A. C., Turrillas, X., Barnes, P., Colston, S. L., Hall, C., Häusermann, D., and Hanfland, M. (1996). “Fast in situ X-ray diffraction studies of chemical reactions: A synchrotron view of the hydration of tricalcium aluminate, ” Phys. Rev. BPRBMDO10.1103/PhysRevB.53.R14697 53, R14697R14700.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2000). General Structure Analysis System (GSAS), Report LAUR 86-748, Los Alamos National Laboratory, Los Alamos, NM.Google Scholar
Meneghini, C., Artioli, G., Balerna, A., Gualtieri, A. F., Norby, P., and Mobilio, S. (2001). “Multipurpose imaging-plate camera for in situ powder XRD at the GILDA beamline, ” J. Synchrotron Radiat.JSYRES10.1107/S090904950100992X 8, 11621166.CrossRefGoogle Scholar
Mittemeijer, E. J. and Scardi, P. (Eds.). (2004). Diffraction Analysis of the Microstructure of Materials (Springer-Verlag, Berlin).CrossRefGoogle Scholar
Oxford Diffraction. (2004). Crysalis CCD and Crysalis RED (Oxford Diffraction Ltd., Abingdon, UK).Google Scholar
Ramachandran, V. S., Malhotra, V. M., Jolicoeur, C., and Spiratos, N. (1998). Superplasticizers: Properties and Applications in Concrete, Publication MTL 97-14 (CANMET, Ottawa).CrossRefGoogle Scholar
Scrivener, K. L., Füllmann, T., Gallucci, E., Walenta, G., and Bermejo, E. (2004). “Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods, ” Cem. Concr. Res.CCNRAI10.1016/j.cemconres.2004.04.014 34, 15411547.CrossRefGoogle Scholar
Taylor, H. F. W. (1997). Cement Chemistry, 2nd ed. (Thomas Telford, London).Google Scholar
Young, R. A. (Ed.). (1993). The Rietveld Method (Oxford U.P., Oxford).CrossRefGoogle Scholar