Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T18:04:30.754Z Has data issue: false hasContentIssue false

Domain structure investigation of non-stoichiometric strontium ferrites and cobaltites

Published online by Cambridge University Press:  14 November 2013

U.V. Ancharova*
Affiliation:
Institute of Solid State Chemistry and Mechanochemistry SB RAS, Novosibirsk, Russia
S.V. Cherepanova
Affiliation:
Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia
*

Abstract

Monte Carlo domain structure simulation and Debye equation calculation of XRD patterns were used to confirm the formation of domain structure and investigate its peculiarities. Correspondence of simulated XRD patterns with synchrotron powder diffraction experiments is achieved on the conditions that beside of 90o rotations of brownmillerite-like domains inside perovskite-like matrix each domain contains areas with perpendicularly oriented tetrahedral chains. Influence of such parameters as stoichiometry, average domain size, orthorhombic distortion degree on the XRD patterns is considered.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alario-Franco, M. A., Joubert, J. C. and Lévy, J. P. (1982). “Anion deficiency in iron perovskites: The SrxNd1-xFeO3-y solid solution I: 0.6<x<0.8,” Mater. Res. Bull. 17, 733740.CrossRefGoogle Scholar
Anderson, J. S. (1970). Problems of Nonstoichiometry (Amsterdam: North-Holland).Google Scholar
Ancharov, A. I., Manakov, A. Yu., Mezentsev, N. A., Tolochko, B. P., Sheromov, M. A. and Tsukanov, V. M. (2001). “New station at the 4th beamline of the VEPP-3 storage ring,” Nucl. Instrum. Methods Phys. Res., Sect. A 470, 8083.Google Scholar
Ancharova, U. V., Cherepatova, S. V. and Lyakhov, N. Z. (2012). “Simulation of the X-Ray diffraction pattern of nano-structured Sr(Fe,Co)O3-δ ,” Chem. Sustainable Dev. (4), 395403. [http://www.sibran.ru/en/journals/Hviur/ accessed 7 Jul 2013].Google Scholar
D'Hondt, H., Hadermann, J., Abakumov, A. M., Kalyuzhnaya, A. S., Rozova, M. G., Tsirlin, A. A., Nath, R., Tan, H., Verbeeck, J., Antipov, E. V. and Tendeloo, G. V. (2009). “Synthesis, crystal structure and magnetic properties of the Sr2Al0.78Mn1.22O5.2 anion-deficient layered perovskite,” J. Solid State Chem. 182, 356363.CrossRefGoogle Scholar
Doorn, R. H. E., Burggraaf, A. J. (2000). “Structural aspects of the ionic conductivity of La1–xSrxCoO3–δ, Solid State Ionics. 128, 6578.CrossRefGoogle Scholar
Grenier, J. C., Ea, N., Pouchard, M. and Hagenmuller, P. (1985). “Structural Transitions at High Temperature in Sr2Fe2O5, J. Solid State Chem. 58, 243252.Google Scholar
Hodges, J. P., Short, S., Jorgensen, J. D., Xiong, X., Dabrowski, B., Mini, S. M. and Kimball, C. W. (2000). “Evolution of oxygen-vacancy ordered crystal structures in the perovskite series SrnFenO3n-1 (n=2, 4, 8, and ∞), and the relationship to electronic and magnetic properties,” J. Solid State Chem. 151, 190209.CrossRefGoogle Scholar
Le Toquin, R., Paulus, W., Cousson, A., Prestipino, C. and Lamberti, C. (2006). “Time-resolved in situ studies of oxygen intercalation into SrCoO2.5, performed by neutron diffraction and X-ray absorption spectroscopy,” J. Am. Chem. Soc. 128, 1316113174.Google Scholar
Lindberg, F., Svensson, G., Istomin, S. Ya., Aleshinskaya, S. V. and Antipov, E. V. (2004). “Synthesis and structural studies of Sr2Co2–xAlxO5, 0.3≤x≤0.5,” J. Solid State Chem. 177, 15921597.Google Scholar
Liu, Y., Withers, R. L. and Fitz Gerald, J. D. (2003). “A TEM, XRD, and crystal chemical investigation of oxygen/vacancy ordering in (Ba1–xLax)2In2O5+x, 0≤x≤0.6,” J. Solid State Chem. 170, 247254.CrossRefGoogle Scholar
Markov, A. A., Savinskaya, O. A., Patrakeev, M. V., Nemudry, A. P., Leonidov, I. A., Pavlyukhin, Yu. T., Ishchenko, A. V. and Kozhevnikov, V. L. (2009). “Structural features, nonstoichiometry and high-temperature transport in SrFe1–xMoxO3–δ ,” J. Solid State Chem. 182, 799806.CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2011). “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr. 44, 12721276.CrossRefGoogle Scholar
Nakayama, N., Takano, M., Inamura, S., Nakanishi, N. and Kosuge, K. (1987). “Electron microscopy study of the “cubic” perovskite phase SrFe1–xVxO2.5+x (0.05≤x≤0.1),” J. Solid State Chem. 71, 403417.CrossRefGoogle Scholar
Proffen, T. and Neder, R. B. (1997). “DISCUS, a Program for Diffuse Scattering and Defect Structure Simulations,” J. Appl. Crystallogr. 30, 171175.Google Scholar
Takeda, Y., Kanno, K., Takada, T., Yamamoto, O., Takano, M., Nakayama, N. and Bando, Y. (1986). “Phase relation in the oxygen nonstoichiometric system, SrFeOx (2.5≤x≤3.0),” J. Solid State Chem. 63, 237249.CrossRefGoogle Scholar
Weiss, M. (1998). Reaktivität perowskitischer übergangsmetalloxide bei niederen temperaturen (Mensch and Buch Verlag. Berlin).Google Scholar