Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-03T08:27:49.028Z Has data issue: false hasContentIssue false

The direct determination of X-ray diffraction data from specific depths

Published online by Cambridge University Press:  01 March 2012

A. Broadhurst
Affiliation:
Centre for Materials Science and Engineering, Cranfield University, RMCS, Shrivenham, Swindon, Wilts SN6 8LA, United Kingdom
K. D. Rogers
Affiliation:
Centre for Materials Science and Engineering, Cranfield University, RMCS, Shrivenham, Swindon, Wilts SN6 8LA, United Kingdom
D. W. Lane
Affiliation:
Centre for Materials Science and Engineering, Cranfield University, RMCS, Shrivenham, Swindon, Wilts SN6 8LA, United Kingdom
T. W. Lowe
Affiliation:
Applied Mathematics and Operational Research Group, Cranfield University, RMCS, Shrivenham, Swindon, Wilts SN6 8LA, United Kingdom

Abstract

A direct method for determining powder diffraction data from a range of depths is described, where the linear absorption coefficient may vary with depth. A series of traditional data collections with varying angles of incidence are required, and the X-ray diffraction data arising from specific depths will be calculated by the transformation of these measured, angle-dependent spectra. These may then be analysed using any conventional method in order to gain information about characteristics of the sample in question at specific depths. Regularisation techniques have been used to solve the governing Fredholm integral equation to determine the depth-dependent diffractograms. The method has been validated by the use of simulated data having known model profiles, and has also been applied to experimental data from polycrystalline thin film samples.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, C. T. H., Fox, L., Mayers, D. F., and Wright, K. (1964). Comput. J.CMPJA6 7, 141148.CrossRefGoogle Scholar
Broadhurst, A., Rogers, K. D., Lowe, T. W., and Lane, D. W. (2004). Adv. X-Ray Anal.AXRAAA 47, 187193.Google Scholar
Franken, D. (1997). J. Aerosol Sci.JALSB7 28, S275–S276.CrossRefGoogle Scholar
Hanna, O. T. and Brown, L. F. (1991). Chem. Eng. Sci.CESCAC 46, 27492753.CrossRefGoogle Scholar
Kim, J., Ryba, E., and Bai, J. (2003). PolymerPOLMAG 44, 66636674.CrossRefGoogle Scholar
Li, B., Tao, K., Liu, X., Miao, W., and Luo, J. (1999). Thin Solid FilmsTHSFAP 353, 5661.CrossRefGoogle Scholar
Li, B., Tao, K., Liu, X., Miao, W., Feng, T., Yang, N., and Liu, B. (2000). Chin. Phys.CHPHF4 9, 284289.Google Scholar
Lim, G., Parrish, W., Ortiz, C., Bellotto, M., and Hart, M. (1987). J. Mater. Res.JMREEE 2, 471477.CrossRefGoogle Scholar
Luo, J., Du, Y., and Tao, K. (1996). Powder Diffr.PODIE2 11, 117120 .CrossRefGoogle Scholar
Luo, J. and Tao, K. (1996). Thin Solid FilmsTHSFAP10.1016/0040-6090(95)08131-3 279, 5358.CrossRefGoogle Scholar
Neerinck, D. G. and Vink, T. J. (1996). Thin Solid FilmsTHSFAP10.1016/0040-6090(95)08117-8 278, 1217.CrossRefGoogle Scholar
Predecki, P. (1993). Powder Diffr.PODIE2 8, 122126.CrossRefGoogle Scholar
Riele, H. J. J. (1985). Comput. Phys. Commun.CPHCBZ10.1016/0010-4655(85)90032-3 36, 423432.CrossRefGoogle Scholar
Rigden, J. S., Newport, R. J., and Bushnell-Wye, G. (1997). J. Mater. Res.JMREEE 12, 264276.CrossRefGoogle Scholar
Toney, M. F., Huang, T. C., Brennan, S., and Rek, Z. (1988). J. Mater. Res.JMREEE10.1063/1.325845 3, 351356.CrossRefGoogle Scholar
Weese, J. (1993). Comput. Phys. Commun.CPHCBZ10.1016/0010-4655(93)90187-H 77, 429440.CrossRefGoogle Scholar
Wu, H., Li, B., Miao, W., Liu, X., and Tao, K. (2002). Surf. Coat. Technol.SCTEEJ 149, 198205.CrossRefGoogle Scholar