Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T01:55:34.009Z Has data issue: false hasContentIssue false

Development of a quantification method for quartz in various bulk materials by X-ray diffraction and the Rietveld method

Published online by Cambridge University Press:  03 April 2012

Joannie Martin*
Affiliation:
Département de Chimie, Université du Québec à Montréal, 2101, avenue Jeanne-Mance, Montréal, Québec H2X 2J6, Canada
Martin Beauparlant
Affiliation:
Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST)505, boul. De Maisonneuve Ouest, Montréal, Québec H3A 3C2, Canada
Jacques Lesage
Affiliation:
Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST)505, boul. De Maisonneuve Ouest, Montréal, Québec H3A 3C2, Canada
Huu Van Tra
Affiliation:
Département de Chimie, Université du Québec à Montréal, 2101, avenue Jeanne-Mance, Montréal, Québec H2X 2J6, Canada
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Crystalline silica is known for its health hazards, and since 1997 has been listed as Group 1, Carcinogenic to Humans, by the International Agency for Research on Cancer. This issue is particularly important in the industrial environment, and there is still no method that allows quantification of the different polymorphs of crystalline silica. Many analytical methods have been proposed, and the major problem in almost all cases is attributable to the very large variety of matrixes encountered. This study evaluates the potential of X-ray diffraction techniques and an automated Rietveld analysis in order to overcome this problem and to adapt the quantitative analysis of quartz, the most prevalent crystalline silica polymorph, to routine analysis in the health and safety environment. Matrix simulations are done and many parameters are optimized. Sample preparation, the acquisition program, pattern treatment, and Rietveld refinement are evaluated, and a general procedure is determined. Automation of Rietveld refinement leads to a significant reduction in analysis time, but cannot be applied to every type of sample.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asahi, T., Matsudaira, T., Kobayashi, S., Nakayama, K., and Nakamura, T. (2010). “Estimation of purity of chrysotile asbestos by X-ray diffractometry/rietveld refinement,” Analyt. Sci. 26(12), 12951300.CrossRefGoogle ScholarPubMed
Bish, D. L. and Post, J. E. (1989). Modern Powder Diffraction (Mineralogical Society of America, Washington DC).CrossRefGoogle Scholar
Bish, D. L. and Post, J. E. (1993). “Quantitative mineralogical analysis using the Rietveld full-pattern fitting method,” Am. Mineral. 78, 932940.Google Scholar
Caglioti, G., Paoletti, A., and Ricci, F. P. (1958). “Choice of collimators for a crystal spectrometer for neutron diffraction,” Nucl. Instrum. 3(4), 223228.CrossRefGoogle Scholar
Cline, J. P. (1992). “NIST XRD standard reference materials: their characterization and uses” Proceedings of the International Conference on Accuracy in Powder Diffraction II, NIST Special Publication 846 (U.S. Government Printing Office, Washington DC).Google Scholar
De La Torre, A. G., Bruque, S., and Aranda, M. A. G. (2001). “Rietveld quantitative amorphous content analysis,” J. Appl. Crystallogr. 34(2), 196202.CrossRefGoogle Scholar
Gonzalez, R. M., Lorbieke, T. D., McIntyre, B. W., Cathcart, J. D., Brownfield, M., and Winburn, R. S. (2002). “Factors influencing quantitative results for coal combustion by-products using the Riestveld method,” Adv. X-ray Anal. 45, 188193.Google Scholar
Guinebretière, R. (2006). Diffraction des rayons X sur échantillons polycristallins (Hermes, Paris).Google Scholar
Guirado, F., Galí, S., and Chinchón, S. (2000). “Quantitative Rietveld analysis of aluminous cement clinker phases,” Cement Concrete Res. 30(7), 10231029.CrossRefGoogle Scholar
Hurst, V. J., Schroeder, P. A., and Styron, R. W. (1997). “Accurate quantification of quartz and other phases by powder X-ray diffractometry,” Anal. Chim. Acta 337(3), 233252.CrossRefGoogle Scholar
Jenkins, R., Fawcett, T. G., Smith, D. K., Visser, J. W., Morris, M. C., and Frevel, M. K. (1986). “JCPDS-International Center for Diffraction, Data sample preparation methods in X-ray powder diffraction,” Powder Diffr. 1(2), 5163.CrossRefGoogle Scholar
Jenkins, R. and Snyder, R. L. (1996). Introduction to X-ray Powder Diffractometry (John Wiley & Sons, Inc., New York).CrossRefGoogle Scholar
Madsen, I. C., Scarlett, N. V. Y., Cranswick, L. M. D., and Lwin, T. (2001). “Outcomes of the International Union of Crystallography Commission on Powder Diffraction Round Robin on Quantitative Phase Analysis: samples 1a to 1 h,” J. Appl. Crystallogr. 34(4), 409426.CrossRefGoogle Scholar
Miles, W. J. (1999). “Issues and controversy: the measurement of crystalline silica; review papers on analytical methods,” Am. Ind. Hyg. Assoc. J. 60, 396402.CrossRefGoogle ScholarPubMed
Német, Z., Sajó, I., and Demeter, A. (2010). “Rietveld refinement in the routine quantitative analysis of famotidine polymorphs,” J. Pharm. Biomed. Anal. 51(3), 572576.CrossRefGoogle ScholarPubMed
RoHS, Québec (2011). Regulation respecting Occupational Health and Safety (S-2.1, r.13, G. D. Québec) (Restriction of Hazardous Substances, Québec).Google Scholar
Schwarz, M. I. and King, T. E. J. (2009). Interstitial Lung Disease (People's Medical Publishing House, Beijing).Google Scholar
Smith, D. K. (1997). “Evaluation of the detectability and quantification of respirable crystalline silica by X-ray powder diffraction methods,” Powder Diffr. 12(4), 200227.CrossRefGoogle Scholar
Snyder, R. L. (1992). “The use of reference intensity ratios in X-ray quantitative analysis,” Powder Diffr. 7(4), 186193.CrossRefGoogle Scholar
Till, R. and Spears, D. A. (1969). “The determination of quartz in sedimentary rocks using an X-ray diffraction method,” Clays Clay Miner. 17(5), 323327.CrossRefGoogle Scholar
Winburn, R. S., Grier, D. G., McCarthy, G. J., and Peterson, R. B. (2000). “Rietveld quantitiative X-ray diffraction analysis of NIST fly ash standard reference materials,” Powder Diffr. 15(3), 163172.CrossRefGoogle Scholar