Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T15:52:59.523Z Has data issue: false hasContentIssue false

Crystal structures of newly synthesized SbV1.50FeIII0.50(PO4)3 and (SbV0.50FeIII0.50)P2O7

Published online by Cambridge University Press:  01 March 2012

Abderrahim Aatiq
Affiliation:
Faculté des Sciences Ben M’Sik, Département de Chimie, Laboratoire de Chimie des Matériaux Solides, Université HassanII-Mohammédia, Avenue Idriss El harti, B.P. 7955, Casablanca, Morocco
Rachid Bakri
Affiliation:
Faculté des Sciences Ben M’Sik, Département de Chimie, Laboratoire de Chimie des Matériaux Solides, Université HassanII-Mohammédia, Avenue Idriss El harti, B.P. 7955, Casablanca, Morocco

Abstract

Synthesis and structure of two phosphates belonging to the ternary Sb2O5-Fe2O3-P2O5 system are reported. Structures of both SbV1.50FeIII0.50(PO4)3 and (SbV0.50FeIIIe0.50)P2O7 phases, obtained by solid state reaction in air atmosphere at 950 °C and 900 °C, respectively, were determined at room temperature from X-ray powder diffraction using the Rietveld method. Sb1.50Fe0.50(PO4)3 phosphate belongs to the Nasicon-type structure with R32 space group. Hexagonal cell parameters are ahex.=8.305(1) Å and chex.=22.035(2) Å. Rietveld refinement results show a 2-2 ordered distribution, along the c-axis, of X(1) and X(2) sites (crystallographic formula [Sb0.88Fe0.12]X(1)[Fe0.38Sb0.62]X(2)(PO4)3) in the Nasicon framework. (Sb0.50Fe0.50)P2O7 is isotypic with β-SbP2O7 pyrophosphate [Pna21 space group; a=7.865(1) Å, b=15.699(2) Å, c=7.847(1) Å]. Its crystal structure is built up from corner-shared SbO6 or FeO6 octahedra and P2O7 groups (two group types). Each P2O7 group shares its six vertices with three SbO6 and three FeO6 octahedra, and each octahedra is connected to six P2O7 groups. A quasi 1-1 ordered distribution, along the b-axis, of Sb5+ and Fe3+ ions in the pyrophosphate framework are observed.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aatiq, A., Hassine, R., Tigha, R., and Saadoune, I. (2005). “Structures of two newly synthesized A0.50SbFe(PO4)3 (A=Mn, Cd) Nasicon phases,” Powder Diffr.PODIE210.1154/1.1862252 20, 3339.CrossRefGoogle Scholar
Aatiq, A., Tigha, R., Hassine, R., and Saadoune, I. (2006). “Crystallochemistry and structural studies of two newly CaSb0.50Fe1.50(PO4)3 and Ca0.50SbFe(PO4)3 Nasicon phases,” Powder Diffr.PODIE210.1154/1.2104535 21, 4551.CrossRefGoogle Scholar
Birkedal, H., Andersen, A. M. K., Arakcheeva, A., Chapuis, G., Norby, P., and Pattison, P. (2006). “The room-temperature superstructure of ZrP2O7 is orthorhombic: there are no unusual 180° P-O-P bond angles,” Inorg. Chem.INOCAJ 45, 43464351.CrossRefGoogle ScholarPubMed
Brown, I. D. and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK10.1107/S0108768185002063 B41, 244247.CrossRefGoogle Scholar
Hagman, L. and Kierkegaard, P. (1968). “The crystal structure of NaMe 2(PO4)3IV; Me=Ge, Ti, Zr,” Acta Chem. Scand.ACHSE7 22, 18221932.CrossRefGoogle Scholar
ICDD. (1994). “Powder diffraction file,” International Centre for Diffraction Data, edited by Frank McClune, , 12 Campus Boulevard, Newtown Square, PA 19073–3272.Google Scholar
ICDD. (1998). “Powder diffraction file,” International Centre for Diffraction Data, edited by Frank McClune, , 12 Campus Boulevard, Newtown Square, PA 19073–3272.Google Scholar
Jouanneaux, A., Verbaere, A., Guyomard, D., Piffard, Y., Oyetola, S., and Fitch, A. N. (1991). “Sb2(PO4)3, a new mixed-valence antimony phosphate. Preparation and crystal structure,” Eur. J. Solid State Inorg. Chem.EJSCE5 28, 755765.Google Scholar
Jouanneaux, A., Fitch, A. N., Oyetola, S., Verbaere, A., Guyomard, D., and Piffard, Y. (1993). “The MIIIM′V1/2(PO4)33/2 compounds; M=Sb, Nd, Eu, Bi; M′=Sb, Nb, Ta. Preparation and structure,” Eur. J. Solid State Inorg. Chem.EJSCE5 30, 125137.Google Scholar
Kasahara, K., Imoto, H., and Saito, T. (1995). “Preparation and crystal structure of a new form of Sb2(PO4)3 and M½SbV3/2(PO4)3 (M=Y, In, and Sc),” J. Solid State Chem.JSSCBI 118, 104111.CrossRefGoogle Scholar
Krimi, S., Mansouri, I., El Jazouli, A., Chaminade, J. P., Gravereau, P., and Le Flem, G. (1993). “The structure of Na5Ti(PO4)3,” J. Solid State Chem.JSSCBI10.1006/jssc.1993.1248 105, 561566.CrossRefGoogle Scholar
Levi, G. R. and Peyronel, G. (1935). “Sructura cristallographica del gruppo isomorpho (Si, Ti, Zr, Sn, Hf)P2O7,” Z. Kristallogr.ZEKRDZ 92, 190209.CrossRefGoogle Scholar
Oyetola, S., Verbaere, A., Guyomard, D., and Piffard, Y. (1988). “BiIII0.50SbV1.5(PO4)3: a new type of M2(XO4)3 framework related to garnet and Nasicon,” J. Solid State Chem.JSSCBI10.1016/0022-4596(88)90096-5 77, 102111.CrossRefGoogle Scholar
Oyetola, S., Verbaere, A., Guyomard, D., Grossnier, M. P., Piffard, Y., and Tournoux, M. (1991). “New ZrP2O7-like diphosphates of either mixed (MIII0.50M′V0.50) cations (M=Sb, Bi, Nd, Eu; M′=Sb, Nb, Ta) or M′V cations (M′V=Ta, Nb): synthesis and structure,” Eur. J. Solid State Inorg. Chem.EJSCE5 28, 2336.Google Scholar
Rodriguez-Carvajal, J. (1997). “Fullprof, Program for Rietveld refinement,” Laboratoire Léon Brillouin (CEA-CNRS) Saclay, France.Google Scholar
Sanz, J., Iglesias, J. E., Soria, J., Losilla, E. R., Aranda, M. A. G., and Bruque, S. (1997). “Structural disorder in the cubic 3×3×3 superstructure of TiP2O7. XRD and NMR study,” Chem. Mater.CMATEX10.1021/cm970057t 9, 9961003.CrossRefGoogle Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.ACACBN10.1107/S0567739476001551 32, 751767.CrossRefGoogle Scholar
Varga, T., Wilkinson, A. P., Haluska, M. S., and Payzant, E. A. (2005). “Preparation and thermal expansion of (MIII0.50M′V0.50)P2O7 with the cubic ZrP2O7 structure,” J. Solid State Chem.JSSCBI 178, 35413546.CrossRefGoogle Scholar
Verbaere, A., Oyetola, S., Guyomard, D., and Piffard, Y. (1988). “New mixed-valence antimony phosphates, α- and β-SbIIISbV(P2O7)2,” J. Solid State Chem.JSSCBI 75, 217224.CrossRefGoogle Scholar