Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-12-01T03:46:07.933Z Has data issue: false hasContentIssue false

Crystal structures of cefdinir, C14H13N5O5S2, and cefdinir sesquihydrate C14H13N5O5S2(H2O)1.5

Published online by Cambridge University Press:  31 July 2019

Austin M. Wheatley
Affiliation:
North Central College, 131 S. Loomis St., Naperville IL 60540, USA
James A. Kaduk*
Affiliation:
North Central College, 131 S. Loomis St., Naperville IL 60540, USA Illinois Institute of Technology, 3101 S. Dearborn St., Chicago IL 60616, USA
Amy M. Gindhart
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square PA, 19073-3273, USA
Thomas N. Blanton
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square PA, 19073-3273, USA
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The crystal structures of cefdinir and cefdinir sesquihydrate have been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Cefdinir crystallizes in space group P21 (#4) with a = 5.35652(4), b = 19.85676(10), c = 7.57928(5) Å, β = 97.050(1) °, V = 800.061(6) Å3, and Z = 2. Cefdinir sesquihydrate crystallizes in space group C2 (#5) with a = 23.98775(20), b = 5.01646(3), c = 15.92016(12) Å, β = 109.4470(8) °, V = 1806.438(16) Å3, and Z = 4. The cefdinir molecules in the anhydrous crystal structure and sesquihydrate have very different conformations. The two conformations are similar in energy. The hydrogen bonding patterns are very different in the two structures, and the sesquihydrate is more stable than expected from the sum of the energies of cefdinir and cefdinir sesquihydrate, the result of additional hydrogen bonding. The powder patterns are included in the Powder Diffraction File™ as entries 00-066-1604 (cefdinir) and 00-066-1605 (cefdinir sesquihydrate).

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. and Falcicchio, A. (2013). “EXPO2013: a kit of tools for phasing crystal structures from powder data,” J. Appl. Crystallogr. 46, 12311235.Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. and Chang, N. L. (1995). “Patterns in hydrogen bonding: functionality and graph set analysis in crystals,” Angew. Chem. Int. Ed. Eng. 34(15), 15551573.Google Scholar
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).Google Scholar
Bredow, T., Heitjans, P. and Wilkening, M. (2004). “Electric field gradient calculations for Li x Ti S 2 and comparison with Li 7 NMR results,” Phys. Rev. B 70, 115111.Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Sci. 44, 21332144.Google Scholar
Cabri, W., Ghetti, P., Pozzi, G. and Alpegiani, M. (2007). “Polymorphisms and patent, market, and legal battles: cefdinir case study,” Org. Process Res. Dev. 11, 6472.Google Scholar
Chandrasekaran, R., Senthilkumar, K., Murugan, S., Siviah Sangaraju, V. R. and Reddy, O. M. (2005). “Novel Polymorph of Cefdinir,” World Patent Application WO2005/090360.Google Scholar
Daemon, O., Hartmann, K. and Raneburger, J. (2006). “Crystalline cefdinir,” U.S. Patent Application 11/294,116.Google Scholar
Dandala, R. and Sivakumaran, M. (2005). “Novel Crystalline Form of Cefdinir,” US Patent Application 2005/0137182.Google Scholar
Dassault Systèmes (2018). Materials Studio 2018 (BIOVIA, San Diego, CA).Google Scholar
Donnay, J. D. H and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Am. Mineral. 22, 446447.Google Scholar
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D-Arco, P., Noël, Y., Causà, M. and Kirtman, B. (2014). “CRYSTAL14: a program for the ab initio investigation of crystalline solids,” Int. J. Quantum Chem. 114, 12871317.Google Scholar
Duerst, R. W., Law, D. and Lou, X. (2005). “Polymorph of a Pharmaceutical,” US Patent Application 2005/0059818.Google Scholar
Etter, M. C. (1990). “Encoding and decoding hydrogen-bond patterns of organic compounds,” Acc. Chem. Res. 23(4), 120126.Google Scholar
Favre-Nicolin, V. and Černý, R. (2002). “FOX, Free Objects for crystallography: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.Google Scholar
Fawcett, T. G., Kabekkodu, S. N., Blanton, J. R. and Blanton, T. N. (2017). “Chemical analysis by diffraction: the Powder Diffraction File™,” Powder Diffr. 32(2), 6371.Google Scholar
Finger, L. W., Cox, D. E. and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr. 27(6), 892900.Google Scholar
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.Google Scholar
Gatti, C., Saunders, V. R. and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals - the case of urea,” J. Chem. Phys. 101, 1068610696.Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. and Ward, S. C. (2016). “The cambridge structural database,” Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater. 72, 171179.Google Scholar
Hirshfeld, F. L. (1977). “Bonded-atom fragments for describing molecular charge densities,” Theor. Chem. Acta 44, 129138.Google Scholar
Kaduk, J. A., Crowder, C. E., Zhong, K., Fawcett, T. G. and Suchomel, M. R. (2014). “Crystal structure of atomoxetine hydrochloride (Strattera), C17H22NOCl,” Powder Diffr. 29(3), 269273.Google Scholar
Kresse, G. and Furthmüller, J. (1996). “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 1550.Google Scholar
Kumar, Y., Prasad, M. and Prasad, A. (2004). “Crystalline Form of Cefdinir,” World Patent Application WO2004/104010.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System, (GSAS), (Los Alamos National Laboratory Report LAUR 86-784).Google Scholar
Law, D., Henry, R. F. and Lou, X. (2005). “Trihemihydrate, Anhydrate and Hydrate Forms of Cefdinir,” World Patent Application WO2005/090361.Google Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X. and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synch. Rad. 15(5), 427432.Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. and Wood, P. A. (2008). “Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures,” J. Appl. Crystallogr. 41, 466470.Google Scholar
Manca, S., Sala, B. and Monguzzi, R. (2003). “Crystalline Form of Cefdinir,” US Patent Application 2003/0204082.Google Scholar
MDI (2017). Jade 9.8 (Materials Data Inc., Livermore, CA).Google Scholar
O'Boyle, N., Banck, M., James, C. A., Morley, C., Vandermeersch, T. and Hutchison, G. R. (2011). “Open babel: an open chemical toolbox,” J. Chem. Informatics. 3, 33. DOI:10.1186/1758-2946-3-33.Google Scholar
Ohnishi, N., Deguchi, S. and Kitamura, S. (2008). “Oral Pharmaceutical Suspension of Cefdinir Crystal,” US Patent 7,351,419.Google Scholar
Rammohan, A. and Kaduk, J. A. (2018). “Crystal structures of alkali metal (Group 1) citrate salts,” Acta Cryst. B: Struct. Sci. Cryst. Eng. Mater. 74, 239252.Google Scholar
Shields, G. P., Raithby, P. R., Allen, F. H. and Motherwell, W. S. (2000). “The assignment and validation of metal oxidation states in the Cambridge Structural Database,” Acta Cryst. Sec. B: Struct. Sci. 56(3), 455465.Google Scholar
Silk Scientific (2013). UN-SCAN-IT 7.0 (Silk Scientific Corporation, Orem, UT).Google Scholar
Singh, G. P., Sen, H., Srivastava, D., Godbole, H. M., Singh, G. P., Mahajan, P. R., Rananaware, U. B., Nehate, S. P. and Wagh, S. C. (2005). “Stable Bioavailable Crystalline Form of Cefdinir and a Process for the Preparation Thereof,” US Patent Application 2005/0245738.Google Scholar
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr. 32, 281289.Google Scholar
Sun, S., Liu, W. and Feng, C. (2015). “A new crystal form and preparation method Cefdinir,” Chinese patent application CN 103467494 B.Google Scholar
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J. and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.Google Scholar
Takaya, T., Takasugi, H., Magugi, T., Yamanaka, H. and Kawabata, K. (1985). “7-substituted-3-vinyl-3-cephem Compounds and Processes for Production of the Same,” US Patent 4,559,334.Google Scholar
Thompson, P., Cox, D. E. and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3,” J. Appl. Crystallogr. 20(2), 7983.Google Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. and Spackman, M. A. (2017). CrystalExplorer17 (University of Western Australia): http://hirshfeldsurface.net.Google Scholar
van de Streek, J. and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Cryst. Sect. B: Struct. Sci., Cryst. Eng. Mater. 70(6), 10201032.Google Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B. and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the Advanced Photon Source: commissioning and early operational results,” Rev. Sci. Inst. 79, 085105.Google Scholar
Wavefunction, Inc. (2017). Spartan ‘16 Version 2.0.1, Wavefunction Inc., 18401 Von Karman Ave., Suite 370, Irvine CA 92612.Google Scholar
Wheatley, A. M. and Kaduk, J. A. (2018). “Crystal structures of ammonium citrates,” Powder Diffr. 34, 3543.Google Scholar
Supplementary material: File

Wheatley et al. supplementary material

Wheatley et al. supplementary material
Download Wheatley et al. supplementary material(File)
File 761.5 KB