Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T15:06:36.707Z Has data issue: false hasContentIssue false

Crystal structure of prednicarbate, C27H36O8

Published online by Cambridge University Press:  28 August 2019

Zachary R. Butler
Affiliation:
North Central College, 131 S. Loomis, St. Naperville, Illinois 60540, USA
James A. Kaduk*
Affiliation:
North Central College, 131 S. Loomis, St. Naperville, Illinois 60540, USA Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, Illinois 60616, USA
Amy M. Gindhart
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania 19073-3273, USA
Thomas N. Blanton
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania 19073-3273, USA
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The crystal structure of prednicarbate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Prednicarbate crystallizes in space group P212121 (#19) with a = 7.69990(3), b = 10.75725(3), c = 31.36008(11) Å, V = 2597.55(1) Å3, and Z = 4. In the crystal structure the long axis of the steroid ring system lies roughly parallel to the c-axis. The oxygenated side chains are orientated roughly perpendicular to the steroid ring system and are adjacent to each other, parallel to the ab-plane. The only traditional hydrogen bond donor in the prednicarbate molecule is the hydroxyl group O32–H33, but this does not participate in an O–H···O hydrogen bond. The nearest oxygen atoms to O32 are symmetry-related O32 at 4.495 Å, precluding the expected O–H···O hydrogen bond. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A. (2013). “EXPO2013: a kit of tools for phasing crystal structures from powder data,” J. Appl. Crystallogr. 46, 12311235.Google Scholar
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Sci. 44, 21332144.Google Scholar
Dassault Systèmes (2018). Materials Studio 2019R1 (BIOVIA, San Diego, CA).Google Scholar
Donnay, J. D. H., and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Am. Mineral. 22, 446447.Google Scholar
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D-Arco, P., Noël, Y., Causà, M., and Kirtman, B. (2014). “CRYSTAL14: a program for the ab initio investigation of crystalline solids,” Int. J. Quantum Chem. 114, 12871317.Google Scholar
Favre-Nicolin, V., and Černý, R. (2002). “FOX, ‘free objects for crystallography’: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.Google Scholar
Fawcett, T. G., Kabekkodu, S. N., Blanton, J. R., and Blanton, T. N. (2017). “Chemical analysis by diffraction: the Powder Diffraction file™,” Powder Diffr. 32(2), 6371.Google Scholar
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.Google Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals – the case of urea,” J. Chem. Phys. 101, 1068610696.Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge Structural Database,” Acta Crystallogr. B. 72, 171179.Google Scholar
Hirshfeld, F. L. (1977). “Bonded-atom fragments for describing molecular charge densities,” Theor. Chem. Acta. 44, 129138.Google Scholar
Kaduk, J. A., Crowder, C. E., Zhong, K., Fawcett, T. G., and Suchomel, M. R. (2014). “Crystal structure of atomoxetine hydrochloride (Strattera), C17H22NOCl,” Powder Diffr. 29(3), 269273.Google Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synch. Radiat. 15(5), 427432.Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P. A. (2008). “Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures,” J. Appl. Crystallogr. 41, 466470.Google Scholar
MDI (2018). Jade 9.8 (Materials Data Inc., Livermore, CA).Google Scholar
Neto, H. S., de Araujo, G. L. B., dos Santos, L. L., Cosentino, I. C., Carvalho, F. M., and Matos, J. R. (2015). “Inclusion of prednicarbate in the SBA-15 silica,” J. Therm. Anal. Calorim. 123, 22972305.Google Scholar
O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and Hutchison, G. R. (2011). “Open Babel: an open chemical toolbox,” J. Chem. Inform. 3, 33.Google Scholar
Silk Scientific (2013). UN-SCAN-IT 7.0 (Silk Scientific Corporation, Orem, UT).Google Scholar
Sohn, Y.-T., and Kim, S.-Y. (2002). “Effect of crystal form on in vivo topical anti-inflammatory activity of corticosteriods,” Arch. Pharm. Res. 25, 556559.Google Scholar
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.Google Scholar
Toby, B. H., and Von Dreele, R. B. (2013). “GSAS II: the genesis of a modern open source all purpose crystallography software package,” J. Appl. Crystallogr. 46, 544549.Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., and Spackman, M. A. (2017). CrystalExplorer17 (University of Western Australia). http://hirshfeldsurface.net.Google Scholar
van de Streek, J., and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Crystallogr. 70(6), 10201032.Google Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the Advanced Photon Source: commissioning and early operational results,” Rev. Sci. Instrum. 79, 085105.Google Scholar
Wavefunction, Inc. (2018). Spartan ‘18 Version 1.2.0 (Wavefunction Inc., Irvine, CA).Google Scholar
Supplementary material: File

Butler et al. supplementary material

Butler et al. supplementary material 1

Download Butler et al. supplementary material(File)
File 2.7 MB
Supplementary material: File

Butler et al. supplementary material

Butler et al. supplementary material 2

Download Butler et al. supplementary material(File)
File 7.9 KB