Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-08T01:59:53.014Z Has data issue: false hasContentIssue false

Crystal structure of layered perovskite compound, Li2LaTa2O6N

Published online by Cambridge University Press:  05 March 2012

Motoaki Kaga
Affiliation:
Department of Environmental and Materials Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
Hirokazu Kurachi
Affiliation:
Department of Environmental and Materials Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
Toru Asaka
Affiliation:
Department of Environmental and Materials Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
Bing Yue
Affiliation:
Photocatalytic Material Center, National Institute for Materials Science (NIMS), Ibaraki 305-0047, Japan Department of Chemistry, Graduate School of Science, Hokaido University, Sapporo 060–0808, Japan
Jinhua Ye
Affiliation:
Photocatalytic Material Center, National Institute for Materials Science (NIMS), Ibaraki 305-0047, Japan Department of Chemistry, Graduate School of Science, Hokaido University, Sapporo 060–0808, Japan
Koichiro Fukuda*
Affiliation:
Department of Environmental and Materials Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The crystal structure of Li2LaTa2O6N was determined from laboratory X-ray powder diffraction data (Cu Kα1) using the Rietveld method. The title compound is tetragonal with space group I4/mmm, Z=2, and unit-cell dimensions a=0.395 049(4) nm, c=1.850 97(3) nm, and V=0.288 869(6) nm3. The initial structural model was successfully derived by the direct methods and further refined by the Rietveld method, with the anisotropic atomic displacement parameters being assigned for all atoms. The final reliability indices were Rwp=5.73%, S=1.46, Rp=4.33%, RB=1.13%, and RF=0.53%. Li2LaTa2O6N has a layered perovskite structure similar to that of Li2LaTa2O7.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G., and Rizzi, R. (1999). “EXPO: A program for full powder pattern decomposition and crystal structure solution,” J. Appl. Crystallogr.JACGAR 32, 339340.10.1107/S0021889898007729CrossRefGoogle Scholar
Anderson, H. U., Pennell, M. J., and Guha, J. P. (1987). “Polymeric synthesis of lead magnesium niobate powders,” Adv. Ceram.ADCEDE 21, 9198.Google Scholar
Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y. (2001). “Visible-light photocatalysis in nitrogen-doped titanium oxides,” ScienceSCIEAS 293, 269271.10.1126/science.1061051Google Scholar
Brese, N. E. and O’Keeffe, M. (1991). “Bond-valence parameters for solids,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK 47, 192197.10.1107/S0108768190011041Google Scholar
Brindley, G. W. (1949). “Quantitative X-ray analysis of crystalline substances or phases in their mixtures,” Bull. Soc. Chim. Fr.BSCFASD59–63.Google Scholar
Diot, N., Marchand, R., Haines, J., Leger, J. M., Macaudiere, P., and Hull, S. (1999). “Crystal structure determination of the oxynitride Sr2TaO3N,” J. Solid State Chem.JSSCBI 146, 390393.10.1006/jssc.1999.8369CrossRefGoogle Scholar
Dollase, W. A. (1986). “Correction of intensities for preferred orientation in powder diffractometry: Application of the March model,” J. Appl. Crystallogr.JACGAR 19, 267272.10.1107/S0021889886089458CrossRefGoogle Scholar
Elcombe, M. M., Kisi, E. H., Hawkins, K. D., White, T. J., Goodman, P., and Matheson, S. (1991). “Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK 47, 305314.10.1107/S0108768190013416CrossRefGoogle Scholar
Eror, N. G. and Anderson, H. U. (1986). “Polymeric precursor synthesis of ceramic materials,” Mater. Res. Soc. Symp. Proc.MRSPDH 73, 571577.CrossRefGoogle Scholar
Esmaeilzadeh, S., Grins, J., and Horlin, T. (2000). “Synthesis and ionic conductivity properties of oxynitride perovskites AxLa2/3Ta2O6−xNx (A=Na,Li) with La2/3Ta2O6 type structure and a new Ruddlesden-Popper phase Li2LaTa2O6N,” Mater. Sci. ForumMSFOEP 325–326, 1116.10.4028/www.scientific.net/MSF.325-326.11CrossRefGoogle Scholar
Fuertes, A. (2010). “Synthesis and properties of functional oxynitrides—From photocatalysts to CNR materials,” Dalton Trans.DTARAF 39, 59425948.10.1039/c000502aCrossRefGoogle Scholar
Gelato, L. M. and Parthé, E. (1987). “STRUCTURE TIDY—A computer program to standardize crystal structure data,” J. Appl. Crystallogr.JACGAR 20, 139143.10.1107/S0021889887086965CrossRefGoogle Scholar
Gunther, E., Hagenmayer, R., and Jansen, M. (2000). “Structural investigations on the oxidenitrides SrTaO2N, CaTaO2N and LaTaON2 by neutron and X-ray powder diffraction (in German),” Z. Anorg. Allg. Chem.ZAACAB 626, 15191525.10.1002/1521-3749(200007)626:7<1519::AID-ZAAC1519>3.0.CO;2-IGoogle Scholar
Hitoki, G., Takata, T., Kondo, J. N., Hara, M., Kobayashi, H., and Domen, K.An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ<500 nm),” Chem. Commun. (Cambridge)CHCOFS 2002, 16981699.10.1039/b202393hGoogle Scholar
Izumi, F. and Momma, K. (2007). “Three-dimensional visualization in powder diffraction,” Solid State Phenom.DDBPE8 130, 1520.10.4028/www.scientific.net/SSP.130.15Google Scholar
Kakihana, M. (1996). “Sol-gel’ preparation of high temperature superconducting oxides,” J. Sol-Gel Sci. Technol.JSGTEC 6, 755.10.1007/BF00402588CrossRefGoogle Scholar
Kakihana, M. and Yoshimura, M. (1999). “Synthesis and characteristics of complex multicomponent oxides prepared by polymer complex method,” Bull. Chem. Soc. Jpn.BCSJA8 72, 14271443.10.1246/bcsj.72.1427CrossRefGoogle Scholar
Le Bail, A., Duroy, H., and Fourquet, J. L. (1988). “Ab initio structure determination of LiSbWO6 by X-ray powder diffraction,” Mater. Res. Bull.MRBUAC 23, 447452.10.1016/0025-5408(88)90019-0CrossRefGoogle Scholar
Lessing, P. A. (1989). “Mixed-cation oxide powders via polymeric precursors,” Am. Ceram. Soc. Bull.ACSBA7 68, 10021007.Google Scholar
Marchand, R., Pastuszak, R., Laurent, Y., and Roult, G. (1982). “Crystal structure of Nd2AlO3N. Determination of the oxygen-nitrogen order by neutron diffraction,” Rev. Chim. Miner.RVCMA8 19, 684689.Google Scholar
McGuire, N. K. and O’Keeffe, M. (1984). “Bond lengths in alkali metal oxides,” J. Solid State Chem.JSSCBI 54, 4953.10.1016/0022-4596(84)90129-4CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2008). “VESTA: A three-dimensional visualization system for electronic and structural analysis,” J. Appl. Crystallogr.JACGAR 41, 653658.10.1107/S0021889808012016CrossRefGoogle Scholar
Parthé, E. and Gelato, L. M. (1984). “The standardization of inorganic crystal-structure data,” Acta Crystallogr., Sect. A: Found. Crystallogr.ACACEQ 40, 169183.10.1107/S0108767384000416CrossRefGoogle Scholar
Pechini, M. P. (1967). “Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor,” U.S. Patent No. 3,330,697.Google Scholar
Pors, F., Marchand, R., and Laurent, Y. (1991). “New alkaline earth (A) tantalum oxynitrides (A2TaO3N) with dipotassium tetrafluoronickelate (K2NiF4) type structure,” Ann. Chim. (Paris)ANCPAC 16, 547551.Google Scholar
Rietveld, H. M. (1967). “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystallogr.ACSEBH 22, 151152.10.1107/S0365110X67000234CrossRefGoogle Scholar
Ruddlesden, S. N. and Popper, P. (1958). “The compound Sr3Ti2O7 and its structure,” Acta Crystallogr.ACSEBH 11, 5455.10.1107/S0365110X58000128CrossRefGoogle Scholar
Schomaker, V. and Marsh, R. E. (1983). “On evaluating the standard deviation of Ueq,” Acta Crystallogr., Sect. A: Found. Crystallogr.ACACEQ 39, 819820.10.1107/S0108767383001622CrossRefGoogle Scholar
Tobías, G., Oró-Solé, J., Beltrán-Porter, D., and Fuertes, A. (2001). “New family of Ruddlesden-Popper strontium niobium oxynitrides: (SrO)(SrNbO2−xN)n (n=1,2),” Inorg. Chem.INOCAJ 40, 68676869.10.1021/ic015566iGoogle Scholar
Toda, K., Takahashi, M., Teranishi, T., Ye, Z. -G., Sato, M., and Hinatsu, Y. (1999). “Synthesis and structure determination of reduced tantalates, Li2LaTa2O7, Li2Ca2Ta3O10 and Na2Ca2Ta3O10, with a layered perovskite structure,” J. Mater. Chem.JMACEP 9, 799803.10.1039/a807038eCrossRefGoogle Scholar
Toraya, H. (1990). “Array-type universal profile function for powder pattern fitting,” J. Appl. Crystallogr.JACGAR 23, 485491.10.1107/S002188989000704XGoogle Scholar
Young, R. A. (1993). The Rietveld Method, edited by Young, R. A. (Oxford University Press, Oxford), pp. 138.CrossRefGoogle Scholar
Yue, B. and Ye, J. (2011). “Photocatalytic reduction of CO2 using H2 as reductant over oxynitride perovskite Li2LaTa2O6N under visible light” (unpublished).Google Scholar