Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T15:19:50.710Z Has data issue: false hasContentIssue false

Crystal structure of hyoscyamine sulfate monohydrate, (C17H24NO3)2(SO4)(H2O)

Published online by Cambridge University Press:  03 November 2020

James A. Kaduk*
Affiliation:
Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, Illinois60616, USA North Central College, 131 S. Loomis St., Naperville, Illinois60540, USA
Amy M. Gindhart
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania19073-3273, USA
Thomas N. Blanton
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania19073-3273, USA
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The crystal structure of hyoscyamine sulfate monohydrate has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Hyoscyamine sulfate monohydrate crystallizes in space group P21 (#4) with a = 6.60196(2), b = 12.95496(3), c = 20.93090(8) Å, β = 94.8839(2)°, V = 1783.680(5) Å3, and Z = 2. Despite the traditional description as a dihydrate, hyoscyamine sulfate crystallizes as a monohydrate. The two independent hyoscyamine cations have different conformations, which have similar energies. One of the cations is close to the minimum-energy conformation. Each of the protonated nitrogen atoms in the cations acts as a donor to the sulfate anion. The hydroxyl group of one cation acts as a donor to the sulfate anion, while the hydroxyl group of the other cation acts as a donor to the water molecule. The water molecule acts as a donor to two different sulfate anions. The cations and anions are linked by complex chains of hydrogen bonds along the a-axis. The powder pattern has been submitted for inclusion in the Powder Diffraction File™ (PDF®).

Type
New Diffraction Data
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A. (2013). “EXPO2013: a kit of tools for phasing crystal structures from powder data,” J. Appl. Crystallogr. 46, 12311235.CrossRefGoogle Scholar
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Sci. 44, 21332144.CrossRefGoogle ScholarPubMed
Dassault Systèmes (2017). Materials Studio 2018 (BIOVIA, San Diego, CA).Google Scholar
Donnay, J. D. H. and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Am. Mineral. 22, 446447.Google Scholar
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D-Arco, P., Noël, Y., Causà, M., and Kirtman, B. (2014). “CRYSTAL14: a program for the ab initio investigation of crystalline solids,” Int. J. Quantum Chem. 114, 12871317.CrossRefGoogle Scholar
Fawcett, T. G., Kabekkodu, S. N., Blanton, J. R., and Blanton, T. N. (2017). “Chemical analysis by diffraction: the powder diffraction file™,” Powd. Diff. 32, 6371.CrossRefGoogle Scholar
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.Google Scholar
Gates-Rector, S. D. and Blanton, T. N. (2019). “The powder diffraction file: a quality materials characterization database,” Powd. Diffr. 34, 352360.CrossRefGoogle Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals-the case of urea,” J. Chem. Phys 101, 1068610696.CrossRefGoogle Scholar
Gore, V., Joshi, R., Tripathi, A. K., Jadhav, M., and Bhandari, S. (2014). “Crystalline atropine sulfate,” International Patent Application WO 2014/102829.Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge structural database,” Acta Crystallogr. B: Struct. Sci. Cryst. Eng. Mater. 72, 171179.CrossRefGoogle ScholarPubMed
Hirshfeld, F. L. (1977). “Bonded-atom fragments for describing molecular charge densities,” Theor. Chem. Acta 44, 129138.CrossRefGoogle Scholar
Kaduk, J. A., Crowder, C. E., Zhong, K., Fawcett, T. G., and Suchomel, M. R. (2014). “Crystal structure of atomoxetine hydrochloride (Strattera), C17H22NOCl,” Powd. Diffr. 29, 269273.CrossRefGoogle Scholar
Kussäther, E. and Hasse, J. (1972). “Kristall- und Molekülstruktur von 1-Hyoscyaminhydrobromid,” Acta Crystallogr. B 28, 28962899.CrossRefGoogle Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synch. Rad. 15, 427432.CrossRefGoogle ScholarPubMed
Louër, D. and Boultif, A. (2014). “Some further considerations in powder diffraction pattern indexing with the dichotomy method,” Powd. Diffr. 29, S7S12.CrossRefGoogle Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P. A. (2008). “Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures,” J. Appl. Crystallogr. 41, 466470.CrossRefGoogle Scholar
Mostafa, G. A. E., Ghabbour, H. A., and Abdel-Aziz, H. A. (2017). “Tetraphenylborate salt of Atropine®: synthesis and X-ray structure of tetraphenyl-λ4-borane, (1R,3r,5S,8 s)-3-((3-Hydroxy-2-phenylpropanoyl)oxy)-8-methyl-8-azabicyclo[3.2.1]octan-8-ium Salt,” Crystallogr. Rep. 62, 10831088.CrossRefGoogle Scholar
Muhtadi, F. J. (1994). “Hyoscyamine,” Anal. Profiles Drug Subst. Excip. 23, 153228.CrossRefGoogle Scholar
O'Boyle, N., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and Hutchison, G. R. (2011). “Open Babel: an open chemical toolbox,” J. Cheminform. 3, 33.CrossRefGoogle ScholarPubMed
Peintinger, M. F., Vilela Oliveira, D., and Bredow, T. (2013). “Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations,” J. Comput. Chem. 34, 451459.CrossRefGoogle ScholarPubMed
Rammohan, A. and Kaduk, J. A. (2018). “Crystal structures of alkali metal (Group 1) citrate salts,” Acta Crystallogr. B: Struct. Sci. Cryst. Eng. Mater. 74, 239252.CrossRefGoogle ScholarPubMed
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.CrossRefGoogle ScholarPubMed
Toby, B. H. and Von Dreele, R. B. (2013). “GSAS II: the genesis of a modern open source all purpose crystallography software package,” J. Appl. Crystallogr. 46, 544549.CrossRefGoogle Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., and Spackman, M. A. (2017). CrystalExplorer17 (University of Western Australia). Available at: http://hirshfeldsurface.netGoogle Scholar
van de Streek, J. and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Crystallogr. B: Struct. Sci. Cryst. Eng. Mater. 70, 10201032.CrossRefGoogle Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results,” Rev. Sci. Inst. 79, 085105.CrossRefGoogle ScholarPubMed
Wavefunction, Inc. (2017). Spartan ‘16 Version 2.0.1, Wavefunction Inc., 18401 Von Karman Ave., Suite 370, Irvine, CA 92612.Google Scholar
Wheatley, AM and Kaduk, JA (2019). “Crystal structures of ammonium citrates,” Powder Diffraction 34, 3543.CrossRefGoogle Scholar