Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T17:06:07.388Z Has data issue: false hasContentIssue false

Crystal structure of folic acid dihydrate, C29H29N2O6(H2O)2

Published online by Cambridge University Press:  20 October 2014

James A. Kaduk*
Affiliation:
Illinois Institute of Technology, 3101 S. Dearborn Street, Chicago, Illinois 60616
Cyrus E. Crowder
Affiliation:
ICDD, 12 Campus Blvd. Newtown Square, Pennsylvania, 19073-3273
Kai Zhong
Affiliation:
ICDD, 12 Campus Blvd. Newtown Square, Pennsylvania, 19073-3273
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The crystal structure of folic acid dihydrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Folic acid dihydrate crystallizes in space group P212121 (#19) with a = 7.275 78(3), b = 8.632 17(4), c = 32.417 19(22) Å, V = 2035.985(18) Å3, and Z = 4. The structure is dominated by a three-dimensional network of hydrogen bonds. The dicarboxylic acid side chain occurs in a bent conformation, helping explain the ability of folate derivatives to coordinate metal cations. The powder pattern has been submitted to ICDD for inclusion in future releases of the Powder Diffraction File™.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, F. H. (2002). “The Cambridge Structural Database: a quarter of a million crystal structures and rising,” Acta Crystallogr. B: Struct. Sci. 58, 380388.CrossRefGoogle ScholarPubMed
Bernstein, J., Davis, R. E., Shimoni, L., and Chang, N. L. (1995). “Patterns in hydrogen bonding: functionality and graph set analysis in crystals,” Angew. Chem. Int. Ed. Engl. 34, 15551573.CrossRefGoogle Scholar
Bravais, A. (1866). Etudes Cristallographiques (Paris: Gathier Villars).Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Sci. 44, 21332144.CrossRefGoogle ScholarPubMed
Camerman, A., Mastropaolo, D., and Camerman, N. (1980). ACA, Ser. 2 18, 18-xx; CSD Refcode FOLCAH.Google Scholar
David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. S., and Cole, J. C. (2006). “DASH: a program for crystal structure determination from powder diffraction data,” J. Appl. Crystallogr. 39, 910915.CrossRefGoogle Scholar
Donnay, J. D. H. and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Am. Mineral. 22, 446467.Google Scholar
Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R., and Zicovich-Wilson, C. M. (2005). “CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals,” Z. Kristallogr. 220, 571573.CrossRefGoogle Scholar
Duthie, S. J. (1999). “Folic acid deficiency and cancer: mechanisms of DNA instability,” Br. Med. Bull. 55, 578592.CrossRefGoogle ScholarPubMed
Etter, M. C. (1990). “Encoding and decoding hydrogen-bond patterns of organic compounds,” Acc. Chem. Res. 23, 120126.CrossRefGoogle Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals – the case of urea,” J. Chem. Phys. 101, 1068610696.CrossRefGoogle Scholar
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2004). “General Structure Analysis System (GSAS)”, Los Alamos National Laboratory Report LAUR 86–784.Google Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synchotron Radiat. 15, 427432.CrossRefGoogle ScholarPubMed
Mastropaolo, D., Camerman, A., and Camerman, N. (1980). “Folic acid: crystal structure and implications for enzyme binding,” Science 210, 334336.CrossRefGoogle ScholarPubMed
MDI (2014). Jade 9.5 (Materials Data. Inc., Livermore, CA).Google Scholar
Rammohan, A. and Kaduk, J. A. (2014). “Structure and bonding in group 1 citrates,” Acta Crystallogr. B: Struct. Sci., manuscript in preparation.Google Scholar
Shields, G. P., Raithby, P. R., Allen, F. H., and Motherwell, W. S. (2000). “The assignment and validation of metal oxidation states in the Cambridge Structural Database,” Acta Crystallogr. B: Struct. Sci. 56, 455465.CrossRefGoogle ScholarPubMed
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr. 32, 281289.CrossRefGoogle Scholar
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.CrossRefGoogle Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the Advanced Photon Source: Commissioning and early operational results,” Rev. Sci. Instrum. 79, 085105.CrossRefGoogle ScholarPubMed
Wavefunction, Inc. (2013). Spartan ‘14 Version 1.1.0, Wavefunction Inc., 18401 Von Karman Ave., Suite 370, Irvine CA 92612.Google Scholar
Supplementary material: File

Kaduk Supplementary Material

Supplementary Material 1

Download Kaduk Supplementary Material(File)
File 6.5 KB
Supplementary material: File

Kaduk Supplementary Material

Supplementary Material 2

Download Kaduk Supplementary Material(File)
File 2.7 MB