Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T03:35:40.307Z Has data issue: false hasContentIssue false

Crystal structure of 3-[(3,4-dinitro-1H-pyrazol-1-yl)-NNO-azoxy]-4-nitro-1,2,5-oxadiazole

Published online by Cambridge University Press:  06 April 2021

A. O. Dmitrienko*
Affiliation:
Department of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow119991, Russian Federation
A. A. Konnov
Affiliation:
N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow119991, Russian Federation
M. S. Klenov
Affiliation:
N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow119991, Russian Federation
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The crystal structure of a novel high-energy density material 3-[(3,4-dinitro-1H-pyrazol-1-yl)-NNO-azoxy]-4-nitro-1,2,5-oxadiazole C5HN9O8 was determined and refined using laboratory powder diffraction data. The diffraction data and database analysis were insufficient to distinguish two candidate structures from the solution step. Density functional theory with periodic boundary conditions optimizations were used to choose the correct one. 3-[(3,4-Dinitro1H-pyrazol-1-yl)-NNO-azoxy]-4-nitro-1,2,5-oxadiazole crystallizes in space group Pbca with a = 8.3104(2) Å, b = 14.2198(5) Å, c = 19.4264(7) Å, V = 2295.66(14) Å3. The molecular conformation contains a weak intramolecular hydrogen bond C–H⋯O–N, and the structure is dominated by weak O⋯π and O⋯O contacts.

Type
New Diffraction Data
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blöchl, P. E. (1994). “Projector augmented-wave method,” Phys. Rev. B 50(24), 1795317979.CrossRefGoogle ScholarPubMed
Coelho, A. A. (2003). “Indexing of powder diffraction patterns by iterative use of singular value decomposition,” J. Appl. Crystallogr. 36(1), 8695.CrossRefGoogle Scholar
Coelho, A. A. (2018). “TOPAS and TOPAS-academic: an optimization program integrating computer algebra and crystallographic objects written in C++,” J. Appl. Crystallogr. 51(1), 210218.CrossRefGoogle Scholar
Dmitrienko, A. O. and Bushmarinov, I. S. (2015). “Reliable structural data from Rietveld refinements via restraint consistency,” J. Appl. Crystallogr. 48(6), 17771784.CrossRefGoogle Scholar
Favre-Nicolin, V. and Černý, R. (2002). “FOX, “free objects for crystallography”: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35(6), 734743.CrossRefGoogle Scholar
Fedyanin, I. V., Lyssenko, K. A., Fershtat, L. L., Muravyev, N. V., and Makhova, N. N. (2019). “Crystal solvates of energetic 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane molecule with [bmim]-based ionic liquids,” Cryst. Growth Des. 19(7), 36603669.CrossRefGoogle Scholar
Fischer, D., Klapötke, T. M., Reymann, M., and Stierstorfer, J. (2014). “Dense energetic nitraminofurazanes,” Chemistry 20(21), 64016411.CrossRefGoogle ScholarPubMed
Grimme, S., Antony, J., Ehrlich, S., and Krieg, H. (2010). “A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-d) for the 94 elements H-Pu,” J. Chem. Phys. 132(15), 154104.CrossRefGoogle ScholarPubMed
Grimme, S., Ehrlich, S., and Goerigk, L. (2011). “Effect of the damping function in dispersion corrected density functional theory,” J. Comput. Chem. 32(7), 14561465.CrossRefGoogle ScholarPubMed
Klenov, M. S., Anikin, O. V., Guskov, A. A., Churakov, A. M., Strelenko, Y. A., Ananyev, I. V., Bushmarinov, I. S., Dmitrienko, A. O., Lyssenko, K. A., and Tartakovsky, V. A. (2016). “Serendipitous synthesis of (tert-butyl-NNO-azoxy)acetonitrile: reduction of an oxime moiety to a methylene unit,” Eur. J. Org. Chem. 2016(22), 38453855.CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J. (1996a). “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 1550.CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J. (1996b). “Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 1116911186.CrossRefGoogle Scholar
Kresse, G., and Hafner, J. (1993). “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B 47(1), 558561.CrossRefGoogle ScholarPubMed
Kresse, G., and Hafner, J. (1994). “Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium,” Phys. Rev. B 49(20), 1425114269.CrossRefGoogle ScholarPubMed
Kresse, G. and Joubert, D. (1999). “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 17581775.CrossRefGoogle Scholar
Liu, Y., Zhang, J., Wang, K., Li, J., Zhang, Q., and Shreeve, J. (2016). “Bis(4-nitraminofurazanyl-3-azoxy)azofurazan and derivatives: 1,2,5-oxadiazole structures and high-performance energetic materials,” Angew. Chem., Int. Ed. 55(38), 1154811551.CrossRefGoogle ScholarPubMed
Markvardsen, A. J., Shankland, K., David, W. I. F., Johnston, J. C., Ibberson, R. M., Tucker, M., Nowell, H., and Griffin, T. (2008). “Extsym: a program to aid space-group determination from powder diffraction data,” J. Appl. Crystallogr. 41(6), 11771181.CrossRefGoogle Scholar
Moriarty, R. M., Hopkins, T. E., Prakash, I., Vaid, B. K., and Vaid, R. K. (1990). “Hypervalent iodine oxidation of amines in the presence of nitroso compounds: a method for the preparation of unsymmetrically substituted azoxy compounds,” Synth. Commun. 20(15), 23532357.CrossRefGoogle Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M. (1996). “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 38653868.CrossRefGoogle ScholarPubMed
Sadovnichy, V., Tikhonravov, A., Voevodin, V., and Opanasenko, V. (2013). “'Lomonosov': Supercomputing at Moscow State University,” in Contemporary High Performance Computing: From Petascale toward Exascale, edited by Vetter, Jeffrey S. (Chapman and Hall/CRC Computational Science, Boca Raton, USA), pp. 283307.Google Scholar
Semenov, S. E., Churakov, A. M., Chertanova, L. F., Strelenko, Y. A., Ioffe, S. L., and Tartakovskii, V. A. (1992). “Synthesis of 1-(2,4,6-trichlorophenyl)2-(1,2,4-triazol-4-yl)-diazene-1-oxide,” Bull. Russ. Acad. Sci. Div. Chem. Sci. 41(2), 277279.CrossRefGoogle Scholar
van de Streek, J. and Neumann, M. A. (2010). “Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations,” Acta Crystallogr. Sect. B Struct. Sci. 66(5), 544558.CrossRefGoogle ScholarPubMed
van de Streek, J. and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-d),” Acta Crystallogr. Sect. B Struct. Sci., Cryst. Eng. Mater. 70(6), 10201032.CrossRefGoogle Scholar
Yin, P., Zhang, J., He, C., Parrish, D. A., and Shreeve, J. M. (2014). “Polynitro-substituted pyrazoles and triazoles as potential energetic materials and oxidizers,” J. Mater. Chem. A 2, 32003208.CrossRefGoogle Scholar
Yu, Q., Wang, Z., Yang, H., Wu, B., Lin, Q., Ju, X., Lu, C., and Cheng, G. (2015). “N-trinitroethyl-substituted azoxyfurazan: high detonation performance energetic materials,” RSC Adv. 5(35), 2730527312.CrossRefGoogle Scholar