Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-18T11:02:53.668Z Has data issue: false hasContentIssue false

Crystal structure determination of K2Zn(PO3)4

Published online by Cambridge University Press:  29 February 2012

L. N. Ji
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Y. Q. Chen
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
J. B. Li
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
J. Luo
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
J. K. Liang*
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China and International Center for Materials Physics, Academic Sinica, Shenyang 110016
G. H. Rao
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
*
a)Author to whom correspondence should be addressed. Telephone: +86-10-82649084; Fax:+86-10-82649531; Electronic mail: [email protected]

Abstract

The crystal structure of K2Zn(PO3)4 was determined and refined using the Rietveld method based on the isostructure model of K2Cu(PO3)4. This compound belongs to the monoclinic system with space group Cc and lattice parameters of a=11.0941(2) Å, b=12.5215(3) Å, c=7.6597(2) Å, and β=102.47(2)°. The chemical formula unit per unit cell is Z=4 and the calculated density is 2.938(3) g∕cm3. Zigzag [PO3] chains formed along the a axis, and their period contains eight PO4 tetrahedrons.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Averbuch-Pouchot, , Par, M. -A., Martin, C., Rakotomahanina-Rolaisoa, M. A., Durif, M. -A. (1970). “Mise au point sur les systèmes KPO3–Mg(PO3)2 et KPO3–Zn(PO3)2 données cristallographiques sur ZnNa(PO3)3,” Bull. Soc. Fr. Mineral. Cristallogr.BUFCAE 93, 282286.Google Scholar
Boultif, A. and Louër, D. (2004). “Powder Pattern Indexing with the Dichotom Method,” J. Appl. Crystallogr.JACGAR10.1107/S0021889804014876 37, 724731.CrossRefGoogle Scholar
Brown, I. D. and Altermatt, D. (1985). “Bond-Valence Parameters Obtained from Systematic Analysis of the Inorganic Crystal Structure Database,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK10.1107/S0108768185002063 B41, 244247.CrossRefGoogle Scholar
Chen, X. L., Liang, J. K., and Wang, C. (1995). “Effect of high-angle diffraction data on Rietveld structure refinement,” Acta Phys. Sin. (Overseas Ed.)APHSEU 4, 259267.Google Scholar
ICSD (2004). “Inorganic Crystal Structure Database,” Fachinformationszentrum Karlsruhe (FIZ), Germany and The National Institute of Standards and Technology (NIST), United States.Google Scholar
Ji, L. N., Li, J. B., Luo, J., Liang, J. K., Liu, Y. H., Zhang, J. Y., and Rao, G. H. (2008). “Phase Relations and Flux Research for Zinc Oxide Crystal Growth in the ZnO–K2O–P2O5 System,” J. Alloys Compd.JALCEU 465(1–2), 436441.CrossRefGoogle Scholar
Laügt, P. M., Tordjman, I., Bassi, G., and Guitel, J. C. (1974). “Affinement des Structure Cristallines de CuK2(PO3)4 et CoK2(PO3)4,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK B30, 11001104.CrossRefGoogle Scholar
Look, D. C. (2001). “Recent Advances in ZnO Materials and Devices,” Mater. Sci. Eng., BMSBTEK10.1016/S0921-5107(00)00604-8 80(1–3), 383387.CrossRefGoogle Scholar
Norton, D. P., Heo, Y. W., Lvill, M. P., Ip, K., Pearton, S. J., Chisholm, M. F., and Steiner, T., (2004). “ZnO: Growth, Doping & Processing,” Mater. TodayMTOUAN10.1016/S1369-7021(04)00287-1 7(6), 3440.CrossRefGoogle Scholar
O’Keeffe, M. and Brese, N. E. (1991). “Atom Sizes and Bond Lengths in Molecules and Crystals,” J. Am. Chem. Soc.JACSAT10.1021/ja00009a002 113, 32263229.CrossRefGoogle Scholar
Pearton, S. J., Norton, D. P., Ip, K., Heo, Y. W., and Steiner, T. (2005). “Recent progress in processing and properties of ZnO,” Prog. Mater. Sci.PRMSAQ10.1016/j.pmatsci.2004.04.001 50, 293340.CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A Profile Refinement Method for Nuclear and Magnetic Structures,” J. Appl. Crystallogr.JACGAR10.1107/S0021889869006558 2, 6571.CrossRefGoogle Scholar
Tsukazaki, A., Kubota, M., Ohtomo, A., Onuma, T., Ohtani, K., Ohno, H., Chichibu, S. F., and Kawasaki, M. (2005). “Blue Light-Emitting Diode Based on ZnO,” Jpn. J. Appl. Phys., Part 2JAPLD810.1143/JJAP.44.L643 44(21), L643–645.Google Scholar
Young, R. A., Larson, A. C., and Paiva-Santos, C. O. (1999). “User’s guide to program DBWS-9807 a for Rietveld analysis of X-ray and neutron powder diffraction patterns with a PC and various other computers,” School of Physics, Georgia Institute of Technology, Atlanta, GA.Google Scholar