Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-19T04:12:44.687Z Has data issue: false hasContentIssue false

Compressibility of CaMnO3: A study using a large-volume diffraction press

Published online by Cambridge University Press:  05 March 2012

Jarosław Piętosa*
Affiliation:
Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
Wojciech Paszkowicz
Affiliation:
Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
Roman Minikayev
Affiliation:
Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
Jakub Nowak
Affiliation:
Catholic University of Lublin, Department of Chemistry, al. Krasnicka 102, 20-718 Lublin, Poland
Christian Lathe
Affiliation:
Helmholtz Centre Potsdam, GFZ German Research Centre For Geosciences, Centre for CO2 Storage, 14473 Potsdam, Germany
Christine Martin
Affiliation:
CNRS, Laboratoire CRISMAT–ENSICAEN (UMR CNRS 6805), 6, bld Maréchal Juin, 14050 Caen Cedex 04, France
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

CaMnO3 is a parent compound for various manganite systems exhibiting useful physical properties. Therefore, its structural and elastic properties are of general interest. In this paper, P–V equation of state of stoichiometric CaMnO3 is determined using energy dispersive X-ray diffraction. The measurements were carried out at a synchrotron beamline F2.1 (Hasylab, DESY) with samples compressed in a cubic-anvil diffraction press, MAX80, for pressures ranging up to 4.84 GPa. The experimental bulk modulus of CaMnO3, derived from the variation in the unit-cell volume with pressure by fitting the Birch–Murnaghan equation of state, is 154.4(3.3) GPa. The results are discussed on the basis of experimental and theoretical data for CaMnO3 and related compounds.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akhtar, M. J., Catlow, C. R. A., Slater, B., Walker, A. M., and Woodley, S. M. (2006). “Bulk and surface simulation studies of La1-xCaxMnO3,” Chem. Mater. 18, 15521560. 10.1021/cm052260rCrossRefGoogle Scholar
Angel, R. (2000). “Equation of state,” in High-pressure and High-temperature Crystal Chemistry, MSA Reviews in Mineralogy and Geochemistry, edited by Hazen, R. M. and Downs, R. T. (Mineralogical Society of America, Washington, D.C.), Vol. 41, pp. 3559.CrossRefGoogle Scholar
Angel, R. J., Bujak, M., Zhao, J., Gatta, G. D., and Jacobsen, S. D. (2007). “Effective hydrostatic limits of pressure media for high-pressure crystallographic studies,” J. Appl. Crystallogr. 40, 2632. 10.1107/S0021889806045523CrossRefGoogle Scholar
Arulraj, A., Dinnebier, R. E., Carlson, S., Hanfland, M., and van Smaalen, S. (2005). “Shear strain in Nd0.5Ca0.5MnO3 at high pressures,” Phys. Rev. Lett. 94, 165504–1–4. 10.1103/PhysRevLett.94.165504CrossRefGoogle ScholarPubMed
Birch, F. (1978). “Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K,” J. Geophys. Res. 83 (B3), 1257126810.1029/JB083iB03p01257.CrossRefGoogle Scholar
Buch, J. J. U., Lalitha, G., Pathak, T. K., Vasoya, N. H., Lakhani, V. K., Reddy, P. V., Kumar, R., and Modi, K. B. (2008). “Structural and elastic properties of Ca-substituted LaMnO3 at 300 K,” J. Phys. D: Appl. Phys. 41, 025406–1–10. 10.1088/0022-3727/41/2/025406CrossRefGoogle Scholar
Coey, J. M. D., Viret, M., and von Molnar, S. (1999). “Mixed valence manganites,” Adv. Phys. 48(2), 167293. 10.1080/000187399243455CrossRefGoogle Scholar
Decker, D. L. (1971). “High-pressure equation of state for NaCl, KCl, and CsCl,” J. Appl. Phys. 42, 32393244. 10.1063/1.1660714CrossRefGoogle Scholar
Freyria Fava, F., D’Arco, Ph., Orlando, R., and Dovesi, R. (1997). “A quantum mechanical investigation of the electronic and magnetic properties of CaMnO3 perovskite,” J. Phys.: Condens. Matter 9, 489498. 10.1088/0953-8984/9/2/016Google Scholar
Fuks, D., Dorfman, S., Felsteiner, J., Bakaleinikov, L., Gordon, A., and Kotomin, E. A. (2004). “Ab initio calculations of atomic an electronic structure of LaMnO3 and SrMnO3,” Solid State Ionics 173, 107111. 10.1016/j.ssi.2004.07.060CrossRefGoogle Scholar
Hazen, R. M. and Finger, L. W. (1982). Comparative Crystal Chemistry (Wiley, Chichester).Google Scholar
Jin, S., Tiefel, T. H., McCormack, M., Fastnacht, R. A., Ramesh, R., and Chen, L. H. (1994). “Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films,” Science 264, 413415. 10.1126/science.264.5157.413CrossRefGoogle ScholarPubMed
Kafalas, A., Menyuk, N., Dwight, K., and Longo, J. M. (1971). “Effect of pressure on the magnetic properties of Ca1–xSrxMnO3,” J. Appl. Phys. 42, 14971498. 10.1063/1.1660316CrossRefGoogle Scholar
Klotz, S., Chervin, J.-C., Munsch, P., and Le Marchand, G. (2009). “Hydrostatic limits of 11 pressure transmitting media,” J. Phys. D: Appl. Phys. 42, 075413. 10.1088/0022-3727/42/7/075413CrossRefGoogle Scholar
Kozlenko, D. P., Dubrovinsky, L. S., Goncharenko, I. N., Savenko, B. N., Voronin, V. I., Kiselev, E. A., and Proskurnina, N. V. (2007). “Pressure-induced monoclinic distortion and charge and orbital ordering in La0.5Ca0.5MnO3,” Phys. Rev. B 75, 104408–1–6.CrossRefGoogle Scholar
Liu, Y.-X., Qin, S., Jiang, J.-Z., Takumi, K., and Shi, G.-H. (2010). “High pressure X-ray diffraction study of CaMnO3 perovskite,” Chin. Phys. C 34(7), 10251028. 10.1088/1674-1137/34/7/018Google Scholar
Loa, I., Adler, P., Grzechnik, A., Syassen, K., Schwarz, U., Hanfland, M., Rozenberg, G., Gorodetsky, P., and Pasternak, M. P. (2001). “Pressure-induced quenching of the Jahn-Teller distortion and insulator-to-metal transition in LaMnO3,” Phys. Rev. Lett. 87, 125501–1–4.10.1103/PhysRevLett.87.125501CrossRefGoogle ScholarPubMed
MacChesney, J. B., Williams, H. J., Potter, J. F., and Sherwood, R. C. (1967). “Magnetic study of the manganate phases: CaMnO3, Ca4Mn3O10, Ca3Mn2O7, Ca2MnO4,” Phys. Rev. 164, 779785. 10.1103/PhysRev.164.779CrossRefGoogle Scholar
Markovich, V., Fita, I., Puzniak, R., Rozenberg, E., Martin, C., Wisniewski, A., Maignan, A., Raveau, B., Yuzhelevskii, Y., and Gorodetsky, G. (2004). “Effect of pressure on magnetic and transport properties of CaMn1–xRuxO3, x = 0–0.15: Collapse of ferromagnetic phase in CaMn0.9Ru0.1O3,” Phys. Rev. B 70, 024403–1–5.CrossRefGoogle Scholar
Meneghini, C., Levy, D., Mobilio, S., Ortolani, M., Nuñez-Reguero, M., Kumar, A., and Sarma, D. D. (2001). “High-pressure structure and electronic transport in hole-doped La3/4Ca1/4MnO3 perovskites,” Phys. Rev. B 65, 012111–1–4. 10.1103/PhysRevB.65.012111CrossRefGoogle Scholar
Paszkowicz, W. (1987). “Application of optimization to powder-pattern indexing,” J. Appl. Crystallogr. 20, 166172. 10.1107/S0021889887086898CrossRefGoogle Scholar
Paszkowicz, W. (2002). “High-pressure powder X-ray diffraction at the turn of the century,” Nucl. Instrum. Methods Phys. Res. B 198, 142182. 10.1016/S0168-583X(02)01129-1CrossRefGoogle Scholar
Paszkowicz, W., Piętosa, J., Woodley, S. M., Dłużewski, P. A., Kozłowski, M., and Martin, C. (2010). “Lattice parameters and orthorhombic distortion of CaMnO3,” Powder Diffr. 25, 4659. 10.1154/1.3314256CrossRefGoogle Scholar
Pinsard-Gaudart, L., Rodriguez-Carvajal, J., Daoud-Aladine, A., Goncharenko, I., Medarde, M., Smith, R. I., and Revcolevschi, A. (2001). “Stability of the Jahn-Teller effect and magnetic study of LaMnO3 under pressure,” Phys. Rev. B 64, 064426–1–7.Google Scholar
Poeppelmeier, R., Leonowicz, M. E., Scanlon, J. C., Longo, J. M., and Yelon, W. B. (1982). “Structure determination of CaMnO3 and CaMnO2.5 by X-ray and neutron methods,” J. Solid State Chem. 45, 7179. 10.1016/0022-4596(82)90292-4CrossRefGoogle Scholar
Sani, A., Meneghini, C., Mobilio, S., Ray, S., Sarma, D. D., and Alonso, J. A. (2003). “Exploring the high pressure phase diagram of La1–xCaxMnO3,” arXiv:cond-mat/0304394v1.Google Scholar
Søndenå, R., Ravindran, P., Stølen, S., Grande, T., and Hanfland, M. (2006). “Electronic structure and magnetic properties of cubic and hexagonal SrMnO3,” Phys. Rev. B 74, 144102–1–12.CrossRefGoogle Scholar
Srivastava, A. and Gaur, N. K. (2009). “Bulk modulus and thermodynamic properties of electron-doped calcium manganate – Ca1-xRExMnO3,” J. Magn. Magn. Mater. 321, 38543865. 10.1016/j.jmmm.2009.07.014CrossRefGoogle Scholar
Trimarchi, G. and Binggeli, N. (2005). “Structural and electronic properties of LaMnO3 under pressure: An ab initio LDA+U study,” Phys. Rev. B 71, 035101–1–9. 10.1103/PhysRevB.71.035101CrossRefGoogle Scholar
Wollan, E. O. and Koehler, W. C. (1955). “Neutron diffraction study of the magnetic propertiets of the series of perovskite-type compounds [(1-x)La,xCa]MnO3,” Phys. Rev. 100, 545563. 10.1103/PhysRev.100.545CrossRefGoogle Scholar
Youn, S. J. and Min, B. I. (1998). “Half-metallic electronic structures of colossal magnetoresistance manganese oxides,” J. Korean Phys. Soc. 32, 576583.Google Scholar
Zhou, J. S. and Goodenough, J. B. (2002). “Pressure-induced transition from localized electron toward band antiferromagnetism in LaMnO3,” Phys. Rev. Lett. 89, 087201–1–4.CrossRefGoogle ScholarPubMed
Zhou, J. S. and Goodenough, J. B. (2003). “Exchange interactions in the perovskites Ca1–xSrxMnO3 and RMnO3, R = La, Pr, Sm,” Phys. Rev. B 68, 054403–1–7.CrossRefGoogle Scholar