Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-14T05:19:09.271Z Has data issue: false hasContentIssue false

Application of the overlap integral in X-ray diffraction powder pattern recognition

Published online by Cambridge University Press:  10 January 2013

Stephen L. Lawton
Affiliation:
Mobil Research and Development Corporation, Research Department, P.O. Box 480, Paulsboro, New Jersey 08066
Lawrence S. Bartell
Affiliation:
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109

Abstract

Use of the overlap integral in X-ray diffraction (XRD) powder pattern recognition of crystalline materials is presented. The mathematical expression, derived specifically for diffraction data, provides a measure of similarity between two patterns. Each pattern is represented by a normalized mathematical function. The index of similarity, or overlap integral, indicates how faithfully the two functions overlap and ranges from zero to unity, reaching the latter limit when the two patterns become identical.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blaffert, T. (1984). Adv. in X-ray Anal. 27, 2734.Google Scholar
Cherukuri, S. C., Snyder, R. L., and Beard, D. W. (1983). Adv. X-ray Anal. 26, 99104.Google Scholar
Deem, M. W., and Newsam, J. M. (1989). Nature 342, 260262.Google Scholar
Deem, M. W., and Newsam, J. M. (1992). J. Am. Chem. Soc. 114, 71897198.Google Scholar
Dempsey, E., Kuehl, G. H., and Olson, D. H. (1969). Phys. Chem. 73, 387390.Google Scholar
Edmonds, J. W. (1980). J. Appl. Cryst. 13, 191192.Google Scholar
Frevel, L. K. (1965). Anal. Chem. 37, 471482.Google Scholar
Frevel, L. K., Adams, C. E., and Ruhberg, L. R. (1976). J. Appl. Cryst. 9, 199204.Google Scholar
Frevel, L. K. (1984). Adv. X-ray Anal. 27, 318.Google Scholar
Goehner, R. P., and Garbauskas, M. F. (1983). Adv. X-ray Anal. 26, 8186.Google Scholar
Goehner, R. P. and Garbauskas, M. F. (1984). Adv. X-ray Anal. 27, 2126.Google Scholar
Hanawalt, J. D. (1986). Powder Diffr. 1, 713, plus references contained therein.Google Scholar
Johnson, G. G. Jr., and Vand, V. (1967). Ind. Eng. Chem. 59:8, 1931.Google Scholar
Johnson, G. G. Jr., (1979). Norelco Reporter 26, 1518.Google Scholar
Lin, T., Zhang, S., Chen, L., and Cai, X. (1983). J. Appl. Cryst. 16, 150154.Google Scholar
Marquart, R. G., Katsnelson, I., Milne, G. W. A., Heller, S. R., Johnson, G. G. Jr., and Jenkins, R. (1979). J. Appl. Cryst. 12, 629634.Google Scholar
Nichols, M. C. (1966). A Fortran II Program for the Identification of X-ray Powder Diffraction Patterns, UCRL-70078 (Lawrence Livermore Laboratory, Livermore, CA).Google Scholar
Rohrbaugh, W. J., and Wu, E. L. (1989). Factors Affecting X-ray Diffraction Characteristics of Catalyst Materials, ACS Symposium Ser. No. 411, Chap. 27, “Characterization and Catalyst Development: An Interactive Approach,” pp. 279302.Google Scholar
Schreiner, W. N., Surdukowski, C., and Jenkins, R. (1982a). J. Appl. Cryst. 15, 513523.Google Scholar
Schreiner, W. N., Surdukowski, C., and Jenkins, R. (1982b). J. Appl. Cryst. 15, 524530.Google Scholar
Snyder, R. L. (1981). Adv. X-ray Anal. 24, 8390.Google Scholar
von Ballmoos, R., and Higgins, J. B. (1990). “Collection of Simulated XRD Powder Patterns for Zeolites,” in Zeolites 10, 313S514S.Google Scholar