Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-14T05:22:41.935Z Has data issue: false hasContentIssue false

An X-ray diffraction study of semiconductor and metallic vanadium dioxide

Published online by Cambridge University Press:  10 January 2013

K. D. Rogers
Affiliation:
Cranfield Institute of Technology (RMCS), Shrivenham, Swindon, Wiltshire SN6 8LA, United Kingdom

Abstract

Powder diffraction data for semiconductor and metallic states of vanadium dioxide are presented. The structures are refined by Rietveld methods using a monoclinic cell (a = 5.7529Å, b = 4.5263Å, c = 5.3825Å, β = 122.61°) and space group P21/c for the room temperature data, and a tetragonal cell (a =4.5540Å, c = 2.8557Å) and space group P42/mnm for data collected at 400 K. The similarity between the corresponding X-ray diffraction patterns is discussed. The transition process from the monoclinic to tetragonal phase is investigated and initial evidence for the coexistence of phases over a small temperature range is presented.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, G. (1956). Acta. Chem. Scand. 10 (4), 623628.CrossRefGoogle Scholar
Bish, D., and Howard, S. (1988). J. Appl. Cryst. 21, 8691.CrossRefGoogle Scholar
De Natale, J., Hood, P., and Harker, A. (1989). J. Appl. Phys. 66 (12), 58445850.CrossRefGoogle Scholar
Fuls, E., Hensler, D., and Ross, A. (1967). Appl. Phys. Lett. 10, 199.CrossRefGoogle Scholar
Ghedira, M., Vincent, H., Marazio, M., and Launacy, J. (1977). J. Solid State Chem. 22, 423.CrossRefGoogle Scholar
Goodenough, J. (1971). J. Solid State Chem. 3, 490.CrossRefGoogle Scholar
Griffiths, C., and Eastwood, H. (1974). J. Appl. Phys. 45 (5), 22012206.CrossRefGoogle Scholar
Hood, P., and De Natale, J. (1991). J. Appl. Phys. 70 (1), 376381CrossRefGoogle Scholar
Howard, S., and Snyder, R. (1985). Advances in Materials Characterisation II, Mat. Sci. Res. 19 (Plenum, New York).Google Scholar
Longo, J., and Kierkegaard, P. (1970). Acta. Chem. Scand. 24, 420.CrossRefGoogle Scholar
McWhan, D.Marezio, M., Remeika, J., and Dernier, P. (1977). Phys. Rev. B 10, 490.CrossRefGoogle Scholar
Partlow, D., Gurkovich, S., Radford, K., and Denes, L. (1991). J. Appl. Phys. 70 (1), 443452.CrossRefGoogle Scholar
Rao, C. N., and Rao, G. V. (1970). Phys. Stat. Sol. 1, 597652CrossRefGoogle Scholar
Rogers, K.Coath, J., and Lovell, M. (1991). J. Appl. Phys. 70 (3), 14121415.CrossRefGoogle Scholar
Rogers, K., and Lane, D. (1987). Powder Diffr. 2, 227229.CrossRefGoogle Scholar
Rozgonyi, G., and Polito, W. (1968). J. Electrochem. Soc. 115, 56.CrossRefGoogle Scholar
Westman, S. (1961). Acta Chem. Scand. 15, 217.CrossRefGoogle Scholar