Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T03:00:00.888Z Has data issue: false hasContentIssue false

Ab initio structure determination of 3,4-diaminopyridin-1-ium dihydrogen phosphate

Published online by Cambridge University Press:  05 March 2012

A. Le Bail*
Affiliation:
Laboratoire des Oxydes et Fluorures, CNRS UMR 6010, Université du Maine, avenue O. Messiaen, 72085 Le Mans Cedex 9, France
L’. Smrčok
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 36 Bratislava, Slovak Republic
*
a)Electronic mail: [email protected]

Abstract

The structure of 3,4-diaminopyridin-1-ium dihydrogen phosphate, [C5H3(NH)(NH2)2]+ (H2PO4), is solved from conventional X-ray powder diffraction data in direct space (monoclinic unit cell with a = 16.0725(9) Å, b = 7.7301(3) Å, c = 14.6189(9) Å, β = 96.869(1)°, V = 1803.2(2) Å3, Z = 8, and space group I2/c), and optimized by energy minimization in the solid state. In the crystal structure of the title compound, dihydrogenphosphate tetrahedra are linked by strong hydrogen O-H…O bonds forming chains running parallel to the b-axis. Antiparallelly π–π stacked DAP cations form molecular columns in the spaces between the chains. Although the dominant interaction of the molecules with their surroundings is electrostatic, their bonding are further enhanced by N-H…O and C-H…O hydrogen bonds.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balamurugan, P., Jagan, R., and Sivakumar, K. (2010). “Dihydrogen phosphate mediated supramolecular frameworks in 2- and 4-chloroanilinium dihydrogen phosphate salts,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 66, o109o113.10.1107/S0108270110001940/gd3320sup1.cifGoogle Scholar
Blessing, R. H. (1988). “New analysis of the neutron diffraction data for anhydrous orthophosphoric acid and the structure of H3PO4 molecules in crystals,” Acta Crystallogr. Sect. B: Struct. Sci. 44, 334340.10.1107/S0108768188001429Google Scholar
Blöchl, P. E. (1994). “Projector augmented-wave method.” Phys. Rev. B 50, 1795317979.10.1103/PhysRevB.50.17953Google Scholar
Demir, S., Yilmaz, V. T., and Harrison, W. T. A. (2003). “2-(Hydrogenmethyl) pyridinium dihydrogenphosphate,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 59, o378o380.10.1107/S0108270103011077CrossRefGoogle Scholar
de Wolf, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1, 108113.10.1107/S002188986800508XCrossRefGoogle Scholar
Fun, H.-K. and Balasubramani, K. (2009). “3,4-Diaminopyridinium hydrogen succinate,” Acta Crystallogr., Sect. E: Struct. Rep. Online 65, o1531o1532.10.1107/S1600536809021205/sj2630sup1.cifGoogle Scholar
Gražulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F. T., Quirós, M.,Lutterotti, L., Manakova, E., Butkus, J., Moeck, P., and Le Bail, A. (2009). “Crystallography Open Database - an open-access collection of crystal structures,” J. Appl. Crystallogr. 42, 726729.10.1107/S0021889809016690CrossRefGoogle ScholarPubMed
Guyon, F., Pradeau, D., Le Hoang, M. D., and Houri, J.-J.(2002). International Patent No. WO2002062760 (15 August).Google Scholar
Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding (Oxford University Press, New York), p. 12.Google Scholar
Kaman, O., Smrčok, L’., Císařová, I., and Havlíček, D. (2011). “Dihydrogen phosphate and hydrogen sulphate of 1,4-dimethyl-1,4-diazabicyclo[2.2.2]octane-1,4-diium: Crystal structures, hydrogen bonding and infrared spectra,” J. Chem. Crystallogr. 41, 1539154610.1007/s10870-011-0137-0CrossRefGoogle Scholar
Koleva, B., Tsanev, T., Kolev, T., Mayer-Figge, H., and Sheldrick, W. S. (2007). “3,4-diaminopyridinium hydrogen squarate,” Acta Crystallogr., Sect. E: Struct. Rep. Online 63, o3556.10.1107/S1600536807031170/bt2412sup1.cifGoogle Scholar
Koleva, B., Kolev, T., Tsanev, T., Kotov, S., Mayer-Figge, H., Seidel, R. W., and Sheldrick, W. S. (2008). “Spectroscopic and structural elucidation of 3,4-diaminopyridine and its hydrogentartarate salt: Crystal structure of 3,4-diaminopyridinium hydrogentartarate dihydrate,” J. Mol. Struct. 881, 146155.10.1016/j.molstruc.2007.09.006Google Scholar
Kresse, G. and Furthmüller, J. (1996a). “Efficient iterative scheme for ab initio total energy calculations using a plane-wave basis set,” Phys. Rev. B, 54, 1116911186.10.1103/PhysRevB.54.11169Google Scholar
Kresse, G. and Furthmüller, J. (1996b). “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 1550.10.1016/0927-0256(96)00008-0CrossRefGoogle Scholar
Kresse, G. and Hafner, J. (1993). “Ab initio molecular dynamics for open-shell transition metals,” Phys. Rev. B 48, 1311513118.10.1103/PhysRevB.48.13115Google Scholar
Kresse, G. and Hafner, J. (1994). “Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements,” J. Phys.: Condens. Matter 6, 82458527.10.1088/0953-8984/6/40/015Google Scholar
Kresse, G. and Joubert, J. (1999). “From ultrasoft potentials to the projector augmented wave method,” Phys. Rev. B 59, 17581775.10.1103/PhysRevB.59.1758CrossRefGoogle Scholar
Kumara Swamy, K. C., Kumaraswamy, S., and Kommana, P. (2001). “Very strong C-H…O, N-H…O, and O-H…O hydrogen bonds involving a cyclic phosphate,” J. Am. Chem. Soc. 123, 1264212643.10.1021/ja010713xGoogle Scholar
Le Bail, A. (2001). “ESPOIR: A program for solving structures by Monte Carlo from powder diffraction data,” Mater. Sci. Forum 378–381, 6570.10.4028/www.scientific.net/MSF.378-381.65Google Scholar
Le Bail, A. (2004). “Monte Carlo indexing with MCMAILLE,” Powder Diffr. 19, 249254.10.1154/1.1763152Google Scholar
Le Bail, A. (2005). “Whole powder pattern decomposition methods and applications—A retrospection,” Powder Diffr. 20, 316326.10.1154/1.2135315CrossRefGoogle Scholar
Le Bail, A. (2008). “Structure solution,” in Principles and Applications of Powder Diffraction, edited by Clearfield, A., Reibenspies, J., and Bhuvanesh, N. (Wiley, New York), pp. 261309.Google Scholar
Le Bail, A., Cranswick, L. M. D, Adil, K., Altomare, A., Avdeev, M., Cerny, R., Cuocci, C., Giacovazzo, C., Halasz, I., Lapidus, S. H., Louwen, J. N., Moliterni, A., Palatinus, L., Rizzi, R., Schilder, E. C., Stephens, P. W., Stone, K. H., and van Mechelen, J. (2009). “Third structure determination by powder diffractometry round robin (SDPDRR-3),” Powder Diffr. 24, 254262.10.1154/1.3200881Google Scholar
Mahmoudkhani, A. H. and Langer, V. (2002) “Phenylphosphonic acid as a building block for two-dimensional hydrogen-bonded supramolecular array,” J. Mol. Struct. 609, 97108.10.1016/S0022-2860(01)00954-1Google Scholar
Marouani, H., Al-Deyab, S. S., and Rzaigui, M. (2011). “2-Aminopyrimidinium dihydrogen phosphate monohydrate,” Acta Crystallogr., Sect. E: Struct. Rep. Online 67, o970o971.10.1107/S1600536811010658/pv2399sup1.cifGoogle Scholar
McEvoy, K. M., Windebank, A. J., Daube, J. R., and Low, P. A. (1989). “2,4-Diaminopyridine in the treatment of Lambert-Eaton mysathenic syndrome,” N. Engl. J. Med. 321, 15671571.10.1056/NEJM198912073212303CrossRefGoogle Scholar
Perdew, J. P. and Wang, Y. (1992). “Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B 45, 1324413249.10.1103/PhysRevB.45.13244Google Scholar
Quartel, A., Turbeville, S., and Lounsbury, D. (2010). “Current therapy for Lambert-Eaton myasthenic syndrome: Development of 3,4-diaminopyridine phosphate salt as first-line symptomatic treatment,” Curr. Med. Res. Opin. 26, 13631375.10.1185/03007991003745209Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.10.1107/S0021889869006558Google Scholar
Rodriguez-Carvajal, J. (1993). “Recent advances in magnetic-structure determination by neutron powder diffraction,” Physica B, 192, 5569.10.1016/0921-4526(93)90108-IGoogle Scholar
Rubin-Preminger, J. M. and Englert, U. (2007). “3,4-Diaminopyridine,” Acta Crystallogr., Sect. E: Struct. Rep. Online 64, o757o758.10.1107/S1600536807001444/bt2244sup1.cifGoogle Scholar
Sheldrick, G. (2008). “A short history of SHELX,” Acta Crystallogr., Sect. A: Found. Crystallogr. 64, 112122.10.1107/S0108767307043930CrossRefGoogle Scholar
Smith, G. S. and Snyder, R. L. (1979). “F N: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.10.1107/S002188987901178XCrossRefGoogle Scholar
Smrčok, Ľ., Havlíček, D., Kaman, O., and Rundlőf, H. (2009). “1,4-Diazabicyclo[2.2.2]octane-1,4-diium dihydrogenphosphate monohydrate from X-ray and neutron data,” Z. Kristallogr. 224, 174178.10.1524/zkri.2009.1127CrossRefGoogle Scholar
Spek, A. L. (2003). “Single crystal structure validation with the program PLATON,” J. Appl. Crystallogr. 36, 713.10.1107/S0021889802022112Google Scholar
See supplementary material at http://dx.doi.org/10.1154/1.3660160 E-PODIE2-26-011104 for the crystallographic information file (CIF).Google Scholar