Published online by Cambridge University Press: 04 January 2017
In this article, the mathematical and probabilistic foundations of Gary King's “generalized event count” (GEC) model for dealing with unequally dispersed event count data are explored. It is shown that the GEC model is a probability model that joins together the binomial, negative binomial, and Poisson distributions. Some aspects of the GEC's reparameterization are described and extended and it is shown how different reparameterizations lead to different interpretations of the dispersion parameter. The common mathematical and statistical structure of “unequally dispersed” event count models as models that require estimation of the “number of trials” parameter along with the “probability” component is derived. Some questions pertaining to estimation of this class of models are raised for future discussion.