Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T22:13:03.788Z Has data issue: false hasContentIssue false

Through the Japanese field research in Greenland: A changing natural environment and its impact on human society

Published online by Cambridge University Press:  01 April 2020

Shin Sugiyama*
Affiliation:
Institute of Low Temperature Science, Hokkaido University, Nishi 8, Kita 19, Sapporo, 060-0819, Japan
*
Author for correspondence: Shin Sugiyama, Email: [email protected]

Abstract

Under the influence of a rapidly warming climate, abrupt changes have been observed along the coast of Greenland. This commentary is based on a Japanese research project initiated in 2012, in which we examined the recent changes in the coastal environment and their impacts on human society in Qaanaaq, a village in northwestern Greenland. Initially, our research sought to quantify the mass loss of glaciers and its interaction with the ocean in the Qaanaaq region. Over the course of the project in collaboration with local communities, we soon realised that the changes in glaciers and the ocean directly impacted the ~600 residents of Qaanaaq. We observed natural disasters triggered by climate change. Environmental changes are also important for local economy and industry because loss of sea ice may lead to growth in transportation, tourism and mineral resource exploration. In order to share the results of our study with the Qaanaaq community, and to gain understanding of local and traditional knowledge, we organised an annual meeting in the village every summer since 2016. Our experience demonstrates the critical importance of performing a long-term multidisciplinary study, including participation of the local communities to understand the changing environment, and to contribute to a sustainable future in Qaanaaq.

Type
Commentary
Copyright
© The Author(s) 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asaji, I., Sakakibara, D., Yamasaki, S., & Sugiyama, S. (2018). Rapid retreat of Bowdoin Glacier in northwestern Greenland controlled by the ocean and glacier bed geometry. American Geophysical Union, Fall Meeting 2018, abstract C21B-1323.Google Scholar
Arendt, K. E., Agersted, M. D., Sejr, M. K., & Juul-Pedersen, T. (2016). Glacial meltwater influences on plankton community structure and the importance of top-down control (of primary production) in a NE Greenland fjord. Estuarine, Coastal and Shelf Science, 183, 123135. doi: 10.1016/j.ecss.2016.08.026.CrossRefGoogle Scholar
Bolch, T., Sandberg Sørensen, L., Simonsen, S. B., Mölg, N., Machguth, H., Rastner, P., & Paul, F. (2013). Mass loss of Greenland’s glaciers and ice caps 2003-2008 revealed from ICESat laser altimetry data. Geophysical Research Letters, 40(5), 875881. doi: 10.1002/grl.50270.CrossRefGoogle Scholar
Böning, C. W., Behrens, E., Biastoch, A., Getzlaff, K., & Bamber, J. L. (2016). Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean. Nature Geoscience, 9(7), 523527. doi: 10.1038/ngeo2740.CrossRefGoogle Scholar
Bendixen, M., Lønsmann Iversen, L., Anker Bjørk, A., Elberling, B., Westergaard-nielsen, A., Overeem, I., & Kroon, A. (2017). Delta progradation in Greenland driven by increasing glacial mass loss. Nature, 550(7674), 101104. doi: 10.1038/nature23873CrossRefGoogle ScholarPubMed
Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M. J., Van Angelen, J. H., & Van Den Broeke, M. R. (2014). An improved mass budget for the Greenland ice sheet. Geophysical Research Letters, 41(3), 866872. doi: 10.1002/2013GL059010.CrossRefGoogle Scholar
Fettweis, X., Box, J. E., Agosta, C., Amory, C., Kittel, C., Lang, C., & Gallée, H. (2017). Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model. The Cryosphere, 11(2), 10151033. doi: 10.5194/tc-11-1015-2017.CrossRefGoogle Scholar
Fuse, T., Kanehara, Y., & Sato, R. (2015). Petroleum exploration in ice-covered sea — The case of Greenland and Kanumas project. Journal of the Japanese Association for Petroleum Technology., 80(1), 2737.CrossRefGoogle Scholar
Government of Greenland (2017). Mineral Exploration. Newsletter, 50.Google Scholar
Hanna, E., Mernild, S. H., Cappelen, J., & Steffen, K. (2012). Recent warming in Greenland in a long-term instrumental (1881–2012) climatic context: I. Evaluation of surface air temperature records. Environmental Research Letters, 7(4), 045404. doi: 10.1088/1748-9326/7/4/045404.CrossRefGoogle Scholar
Howat, I. M., & Eddy, A. (2011). Multi-decadal retreat of Greenland’s marine-terminating glaciers. Journal of Glaciology, 57(203), 389396, doi: 10.3189/002214311796905631.CrossRefGoogle Scholar
Kanna, N., Sugiyama, S., Ohashi, Y., Sakakibara, D., Fukamachi, Y., & Nomura, D. (2018). Upwelling of macronutrients and dissolved inorganic carbon by a subglacial freshwater driven plume in bowdoin fjord, Northwestern Greenland. Journal of Geophysical Research: Biogeosciences, 123(5). doi: 10.1029/2017JG004248.Google Scholar
Khan, S. A., Wahr, J., Bevis, M., Velicogna, I., & Kendrick, E. (2010). Spread of ice mass loss into northwest Greenland observed by GRACE and GPS. Geophysical Research Letters, 37, L06501. doi: 10.1029/2010GL042460.CrossRefGoogle Scholar
Kondo, K., Sakaibara, D., Fukumoto, S., & Sugiyama, S. (2019). Meltwater discharge and flooding of the outlet stream of Qaanaaq Glacier, northwestern Greenland. Geophysical Research Abstracts, 21. EGU2019-11919.Google Scholar
Luo, H., Castelao, R. M., Rennermalm, A. K., Tedesco, M., Bracco, A., Yager, P. L., & Mote, T. L. (2016). Oceanic transport of surface meltwater from the southern Greenland ice sheet. Nature Geoscience, 9(7), 528532. doi: 10.1038/ngeo2708.CrossRefGoogle Scholar
Lydersen, C., Assmy, P., Falk-Petersen, S., Kohler, J., Kovacs, K. M., Reigstad, M., Steen, H., Strøm, H., Sundfjord, A., Varpe, Ø., Walczowski, W., Weslawski, J. M. & Zajaczkowski, M. (2014). The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. Journal of Marine Systems, 129, 452471. doi: 10.1016/j.jmarsys.2013.09.006.CrossRefGoogle Scholar
Murray, T., Scharrer, K., Selmes, N., Booth, A. D., James, T. D., Bevan, S. L. & McGovern, J. (2015). Extensive retreat of Greenland tidewater glaciers, 2000–2010. Arctic, Antarctic, and Alpine Research, 47(3), 427447. doi: 10.1657/AAAR0014-049.CrossRefGoogle Scholar
Naito, A., Abe, Y., Matsuno, K., Nishizawa, B., Kanna, N., Sugiyama, S., & Yamaguchi, A. (2019). Surface zooplankton size and taxonomic composition in Bowdoin Fjord, north-western Greenland: A comparison of ZooScan, OPC and microscopicanalyses. Polar Science, 19, 120129. doi: 10.1016/j.polar.2019.01.001.CrossRefGoogle Scholar
Nielsen, T. F. D., Kokfelt, T. F., & Weatherley, S. M. (2019). Evaluation of contained ilmenite in the Franklin sills and dykes of the Steensby Land and Moriusaq. GEUS Report 2017/2018.Google Scholar
Rignot, E., & Kanagaratnam, P. (2006). Changes in the velocity structure of the Greenland ice sheet. Science, 311, 986990. doi: 10.1126/science.1121381.CrossRefGoogle ScholarPubMed
Ryan, J. C., Smith, L. C., Van As, D., Cooley, S. W., Cooper, M. G., Pitcher, L. H., & Hubbard, A. L. (2019). Greenland Ice Sheet surface melt amplified by snowline migration and bare ice exposure. Science Advances, 5(3), eaav3738. doi: 10.1126/sciadv.aav3738CrossRefGoogle ScholarPubMed
Saito, J., Sugiyama, S., Tsutaki, S., & Sawagaki, T. (2016). Surface elevation change on ice caps in the Qaanaaq region, northwestern Greenland. Polar Science, 10(3), 239248. doi: 10.1016/j.polar.2016.05.002.CrossRefGoogle Scholar
Sakakibara, D., & Sugiyama, S. (2018). Ice front and flow speed variations of marine-terminating outlet glaciers along the coast of Prudhoe Land, Northwestern Greenland. Journal of Glaciology, 64(244). doi: 10.1017/jog.2018.20.CrossRefGoogle Scholar
Sugiyama, S., Sakakibara, D., Matsuno, S., Yamaguchi, S., Matoba, S., & Aoki, T. (2014). Initial field observations on Qaanaaq ice cap, Northwestern Greenland. Annals of Glaciology, 55(66), 2533. doi: 10.3189/2014AoG66A102.CrossRefGoogle Scholar
Takahashi, M. (2019). EU’s management of the life and death of whales and its political implications. In Kishigami, N. (Ed.) Whaling cultures in the world―current status, history and locality. Senri Ethnological Reports, 149, pp. 175193. (In Japanese) doi: 10.15021/00009435CrossRefGoogle Scholar
Tedesco, M., Doherty, S., Fettweis, X., Alexander, P., Jeyaratnam, J., & Stroeve, J. (2016). The darkening of the Greenland ice sheet: Trends, drivers, and projections (1981–2100). The Cryosphere, 10(2), 477496. doi: 10.5194/tc-10-477-2016.CrossRefGoogle Scholar
Yamasaki, S., & Watanabe, T. (2019). Landslide and flash flood caused by the 2016-17 heavy rain events in Siorapaluk, north Greenland. Geophysical Research Abstracts, 21. EGU2019-3516-2.Google Scholar