Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-08T10:30:05.376Z Has data issue: false hasContentIssue false

Properties and history of the central eastern Arctic sea floor

Published online by Cambridge University Press:  27 October 2009

J. Thiede
Affiliation:
GEOMAR, Forschungszentrum für Marine Geowissenschaften, WischhofstraBe 1–3, Geb.4, D-2300 Kiel 14 FRG;
A. Altenbach
Affiliation:
Geologisch-Paläontologisches Institut und Museum, Christian-Albrechts-Universität, OlshausenstraBe 40, D-2300 Kiel 1 FRG;
U. Bleil
Affiliation:
Fachbereich Geowissenschaften, Universität Bremen, Postfach 330 440, D-2800 Bremen 33 FRG;
R. Botz
Affiliation:
Geologisch-Paläontologisches Institut und Museum, Christian-Albrechts-Universität, OlshausenstraBe 40, D-2300 Kiel 1 FRG;
P. Mudie
Affiliation:
Geological Survey Canada, Atlantic Geoscience Centre, Bedford Institute of Oceanography, Box 1006, Dartmouth, Nova Scotia B2Y 4A2, Canada;
S. Pfirman
Affiliation:
GEOMAR, Forschungszentrum für Marine Geowissenschaften, WischhofstraBe 1–3, Geb.4, D-2300 Kiel 14 FRG;
E. Sundvor
Affiliation:
Jordskjelvstasjonen, University of Bergen, AUégate 41 (Realfagbygg.), N-5000 Bergen, Norway

Abstract

The deep eastern Arctic basin between the Lomonosov Ridge and the Eurasian continental margin differs from other ocean basins in the very slow spreading of its floor and unusual depositional environment under perennial sea-ice cover. The recent expedition ARK IV/3 of RV Polar stern for the first time made geoscientific investigations from the northern margin of the Barents Sea north to the Nansen-Gakkel Ridge. Much deeper than most other mid-ocean ridges, this ridge is poorly-surveyed, but has a central valley which in places is deeper than 5.5 km, 1–1.5 km below the basin floors on either side. Heat flow in the central part of the valley is very rapid; both basement rocks and overlying sediments showed unexpectedly the influence of intense and long-term hydrothermal activity. The sediments on the northern and southern flanks of the ridge are slightly calcareous pelagic mud layers alternating with carbonate-free horizons, where up to 40% of the sedimentary section is soft mud clasts. Similar mud aggregates were observed on the surface of the multi-year sea ice, appearing to represent a special type of sediment transport by sea ice in the Transpolar Drift. In contrast to the western Arctic, Fram Strait and the Norwegian-Greenland Sea, gravel is rarely found in sediment cores. Recovered cores indicate that icebergs and sea ice carrying coarse sediment seldom rafted detritus to the study area during the last approximately 300,000 years.

Type
Articles
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aksu, A. E. and Mudie, P. J. 1985. Magnetostratigraphy and palynology demonstrate at least 4 million years of Arctic Ocean sedimentation. Nature 318: 280–83.Google Scholar
Anderson, L. G., Jones, E. P., Koltermann, K. P., Schlosser, P., Swift, J. H. and Wallace, D. R. (in press) A first oceanographic section across the Nansen Basin in the Arctic Ocean. Deep-Sea Research 36(3): 475–82.CrossRefGoogle Scholar
Augstein, E., Hempel, G., Schwarz, J., Thiede, J. and Weigel, W. 1984. Die Expedition ARKTIS II des FS Polarstern. Berichte zur Polarforschung 20: 1192.Google Scholar
Baggeroer, A. and Dyer, I. 1982. FRAM-II in the eastern Arctic. Eos 63: 14.CrossRefGoogle Scholar
Bleil, U. 1987. Quaternary high latitude magnetostratigraphy. Polar Research 5(ns): 325–27.CrossRefGoogle Scholar
Bøggild, O. B. 1906. On the bottom deposits of the North Polar Sea. In Nansen, F. (editor) Norwegian North Polar Expedition 1893–1896, Scientific Results 5: 162.Google Scholar
Clark, D. L., Whitman, R. R., Morgan, K. A. and Mackay, S. D. 1980. Stratigraphy and glacial marine sediments of the Amerasian Basin. Geological Society of America 181: 157.CrossRefGoogle Scholar
Gordienko, P. A. and Laktionov, A. F. 1969. Circulation and physics of the Arctic Basin waters. Annals of the International Geophysical Year 46: 94122.Google Scholar
Hunkins, K.L., Kristoffersen, Y., Johnson, G. L and Heiberg, A. 1979. The FRAM-I Expedition. Eos 60: 52.CrossRefGoogle Scholar
Kristoffersen, Y. 1982. US ice drift station FRAM-IV: Report on the Norwegian field program. Rapportserie Norsk Polarinstitutt 11: 160.Google Scholar
Lövlie, R., Markussen, B., Sejrup, H. P. and Thiede, J. 1986. Magnetostratigraphy in three Arctic Ocean sediment cores; arguments for geomagnetic excursions within oxygen-isotope stage 2–3. Physics of the Earth and Planetary Interiors 43: 173–84.Google Scholar
Manley, T. O., Codispoti, L. A., Hunkins, K. L, Jackson, H. R., Jones, E. P., Lee, V., Moore, S., Morison, J., Packard, T. and Wadhams, P. 1982. The Fram-III Expedition. Eos 63: 35.Google Scholar
Markussen, B. 1986. Late Quaternary sedimentation and paleoceanography in the eastern Arctic Ocean. Doctoral thesis, University of Oslo.Google Scholar
Mudie, P. J. 1985. Palynology of the CESAR cores, Alpha Ridge. Geological Survey of Canada Paper 84 22: 149–74.Google Scholar
Mudie, P. J. and Blasco, S. M. 1985. Lithostratigraphy of the CESAR cores. Geological Survey of Canada Paper 84.22: 59100.Google Scholar
Nansen, F. (editor). 19001906. The Norwegian North Polar Expedition 1893–96 Scientific Results I–VI.Google Scholar
Perry, R. K., Fleming, H. S., Weber, J. R., Kristoffersen, Y., Hall, J. K., Grantz, A., Johnson, G. L., Cherkis, N. Z. and Larsen, B. 1986. Bathymetry of the Arctic Ocean. Naval Research Laboratory, Acoustics Division, and Geological Society of America.Google Scholar
Pfirman, S. L, Gascard, J.-C., Wollenburg, I. and Mudie, P. 1989. High particulate content in Arctic Basin sea ice: observations from RV Polarstern expedition, July and August 1987. Polar Research 7: 5966.CrossRefGoogle Scholar
Polarstern Shipboard Scientific Party. 1988. Breakthrough in Arctic deep-sea research: the Polarstern expedition 1987. Eos 69(25): 665–78.CrossRefGoogle Scholar
Spielhagen, R. and Pfirman, S. L. (editors). 1988. GEODATA: geoscientific report on the ARK IV/3 expedition of the PFVS Polarstern, summer 1987, to the central eastern Arctic Basin. Berichte 21, Geologisch- Paläontologisches Institut und Museum der Christian- Albrechts-Universität zu Kiel.Google Scholar
Sundvor, E. 1987. Heat flow measurements on the western Svalbard margin. Reports, Seismological Observatory, University of Bergen.Google Scholar
Thiede, J. (editor). 1988. Scientific cruise report ARK IV Expedition. 3rd Leg. Berichte zur Polariorschung 43: 1237.Google Scholar
Van Wagoner, N. A. and Robinson, P. T. 1985. Petrology and geochemistry of a CESAR bedrock sample: implications for the origin of Alpha Ridge. Geological Survey of Canada Paper 84.22, 4757.Google Scholar
Vogt, P. R., Kovacs, L. C., Bernero, L C. and Srivastava, S. P. 1982. Asymmetric geophysical signatures in the Greenland-Norwegian and southern Labrador seas and the Eurasian Basin. Tectonophysics 89: 95160.Google Scholar
Vogt, P. 1986a. Seafloor topography, sediments, and paleoenvironments. In: Hurdle, B. G. (editor). The Nordic seas. New York, Springer: 237410.CrossRefGoogle Scholar
Vogt, P. 1986b. Geophysical and geochemical signatures and plate tectonics. In: Hurdle, B. G. (editor). The Nordic seas. New York, Springer: 413662.Google Scholar