Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T16:57:40.511Z Has data issue: false hasContentIssue false

The deglaciation of Barton Peninsula (King George Island, South Shetland Islands, Antarctica) based on geomorphological evidence and lacustrine records

Published online by Cambridge University Press:  03 September 2019

Marc Oliva*
Affiliation:
Department of Geography, University of Barcelona, Spain
Dermot Antoniades
Affiliation:
Department of Géographie & Centre d’Études Nordiques, Université Laval, Canada
Enrique Serrano
Affiliation:
Department of Geography, University of Valladolid, Spain
Santiago Giralt
Affiliation:
Institute of Earth Sciences Jaume Almera, CSIC, Spain
Emma J. Liu
Affiliation:
Department of Earth Sciences, University of Cambridge, UK
Ignacio Granados
Affiliation:
Centro de Investigación, Seguimiento y Evaluación,, Spain
Sergi Pla-Rabes
Affiliation:
Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Spain
Manuel Toro
Affiliation:
Centre for Hydrographic Studies (CEDEX), Spain
Soon Gyu Hong
Affiliation:
Korea Polar Research Institute, South Korea
Gonçalo Vieira
Affiliation:
Centre for Geographical Studies – IGOT, Universidade de Lisboa, Portugal
*
Author for correspondence: Marc Oliva, Email: [email protected]

Abstract

Barton Peninsula is an ice-free area located in the southwest corner of King George Island (South Shetland Islands, Antarctica). Following the Last Glacial Maximum, several geomorphological features developed in newly exposed ice-free terrain and their distribution provide insights about past environmental evolution of the area. Three moraine systems are indicative of three main glacial phases within the long-term glacial retreat, which also favoured the development of numerous lakes. Five of these lakes were cored to understand in greater detail the pattern of deglaciation through the study of lacustrine records. Radiocarbon dates from basal lacustrine sediments enabled the reconstruction of the chronology of Holocene glacial retreat. Tephra layers present in lake sediments provided additional independent age constraints on environmental changes based on geochemical and geochronological correlation with Deception Island-derived tephra. Shrinking of the Collins Glacier exposed the southern coastal fringe of Barton Peninsula at 8 cal ky BP. After a period of relative stability during the mid-Holocene, the ice cap started retreating northwards after 3.7 cal ky BP, confining some glaciers within valleys as shown by moraine systems. Lake sediments confirm a period of relative glacial stability during the last 2.4 cal ky BP.

Type
Research Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antoniades, D., Giralt, S., Geyer, A., Álvarez-Valero, A. M., Pla-Rabes, S., Granados, I., … Oliva, M. (2018). The timing and widespread effects of the largest Holocene volcanic eruption in Antarctica. Scientific Reports, 8, 17279.CrossRefGoogle ScholarPubMed
Bentley, M. J., Cofaigh, C. O., Anderson, J. B., Conway, H., Davies, B., Graham, A. G. C., … Zwartz, D. (2014). A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum. Quaternary Science Reviews, 100, 19.CrossRefGoogle Scholar
Bentley, M. J., Hodgson, D. A., Smith, J. A., O Cofaigh, C., Domack, E. W., Larter, R. D., … Evans, J. (2009). Mechanisms of Holocene paleoenvironmental change in the Antarctic Peninsula region. The Holocene, 19, 5169.CrossRefGoogle Scholar
Björck, S., Sandgren, P., & Zale, R. (1991). Late Holocene tephrochronology of the northern Antarctic Peninsula. Quaternary Research, 36, 322328.CrossRefGoogle Scholar
Bockheim, J., Vieira, G., Ramos, M., López-Martínez, J., Serrano, E., Guglielmin, M., … Nieuwendam, A. (2013). Climate warming and permafrost dynamics in the Antarctic Peninsula region. Global Planetary Change, 100, 215223.CrossRefGoogle Scholar
Correia, A., Oliva, M., & Ruiz-Fernández, J. (2017). Evaluation of frozen ground conditions along a coastal topographic gradient at Byers Peninsula (Livingston Island, Antarctica) by geophysical and geoecological methods. Catena, 149(2), 529537.CrossRefGoogle Scholar
Davies, B. J., Carrivick, J. L., Glasser, N. F., Hambrey, M. J., & Smellie, J. L. (2012). Variable glacier response to atmospheric warming, northern Antarctic Peninsula, 1988–2009. The Cryosphere, 6, 10311048.CrossRefGoogle Scholar
Davies, R. E. S. (1982). The geology of the Marian Cove area, King George Island, and a Tertiary age for its supposed Jurassic volcanic rocks. British Antarctic Survey Bulletin, 51, 294296.Google Scholar
Denton, G. H., Anderson, R. F., Toggweiler, J. R., Edwards, R. L., Schaefer, J. M., & Putnam, A. E. (2010). The Last Glacial Termination. Science, 328, 16521656.CrossRefGoogle ScholarPubMed
Fretwell, P. T., Hodgson, D. A., Watcham, E. P., Bentley, M. J., & Roberts, S. J. (2010). Holocene isostatic uplift of the South Shetland Islands, Antarctic Peninsula, modelled from raised beaches. Quaternary Science Reviews, 29, 18801893.CrossRefGoogle Scholar
Fretzdorff, S., & Smellie, J. L. (2002). Electron microprobe characterization of ash layers in sediments from the central Bransfield basin (Antarctic Peninsula): evidence for at least two volcanic sources. Antarctic Science, 14, 412421.CrossRefGoogle Scholar
Hågvar, S., & Ohlson, M. (2013). Ancient carbon from a melting glacier gives high 14C age in living pioneer invertebrates. Scientific Reports, 3, 2820.CrossRefGoogle Scholar
Hall, B. L. (2009). Holocene glacial history of Antarctica and sub-Antarctic Islands. Quaternary Science Reviews, 28, 22132230.CrossRefGoogle Scholar
Hendy, C. H., & Hall, B. L. (2006). The radiocarbon reservoir effect in proglacial lakes: examples from Antarctica. Earth and Planetary Science Letters, 241, 413421.CrossRefGoogle Scholar
Hodgson, D. A., Dyson, C. L., Jones, V. J. & Smellie, J. L. (1998). Tephra analysis of sediments from Midge Lake (South Shetland Islands) and Sombre Lake (South Orkney Islands), Antarctica. Antarctic Science, 10, 1320.CrossRefGoogle Scholar
Hood, E., Battin, T. J., Fellman, J., O’Neel, S., & Spencer, R. G. M. (2015). Storage and release of organic carbon from glaciers and ice sheets. Nature Geoscience, 8, 9196.CrossRefGoogle Scholar
Hrbáček, F., Vieira, G., Oliva, M., Balks, M., Guglielmin, M., de Pablo, M. A., … Miamin, V. (2018). Active layer monitoring in Antarctica (CALM-S): results from 2006–2015 and new perspectives. Polar Geography, doi: 10.1080/1088937X.2017.1420105.CrossRefGoogle Scholar
Ingólfsson, O., Hjort, C., & Humlum, O. (2003). Glacial and climate history of the Antarctic Peninsula since the Last Glacial Maximum. Arctic, Antarctic, and Alpine Research, 35(2), 175186.CrossRefGoogle Scholar
Kraus, S., Kurbatov, A., & Yates, M. (2013). Geochemical signatures of tephras from Quaternary Antarctic Peninsula volcanoes. Andean Geology, 40, 140.CrossRefGoogle Scholar
Lee, J. I., Yur, S. D., Yoo, C. M., Yeo, J. P., Kim, H., Choe, M. Y., … López-Martínez, J. (2002). Geological Map of Barton and Weaver peninsulas, King George Island, Antarctica, scale. 1:10,000. Seoul: Korea Ocean Research and Development Institute.Google Scholar
Lee, Y. I., Lim, H. S., Yoon, H. I. & Tatur, A. (2007). Characteristics of tephra in Holocene lake sediments on King George Island, West Antarctica: implications for deglaciation and paleoenvironment. Quaternary Science Reviews, 26(25–28), 31673178.CrossRefGoogle Scholar
Liu, E. J., Oliva, M., Antoniades, D., Giralt, S., Granados, I., Pla-Rabes, S., … Geyer, A. (2016). Expanding the tephrostratigraphical framework for the South Shetland Islands, Antarctica, by combining compositional and textural tephra characterisation. Sedimentary Geology, 340, 4961.CrossRefGoogle Scholar
López-Martínez, J., Serrano, E., & Lee, J. I. (2002). Geomorphological map of Barton and Weaver peninsulas, King George Island, Antarctica, scale: 1:10.000. Seoul: Korea Ocean Research and Development Institute.Google Scholar
López-Martínez, J., Serrano, E., Schmid, T., Mink, S., & Linés, C. (2012). Periglacial processes and landforms distribution in the South Shetland Islands (northern Antarctic Peninsula region). Geomorphology, 155–156, 6279.CrossRefGoogle Scholar
Martí, J., Geyer, A., & Aguirre-Díaz, G. (2013). Origin and evolution of the Deception Island caldera (South Shetland Islands, Antarctica). Bulletin of Volcanology, 75, 118.CrossRefGoogle Scholar
Milliken, K. T., Anderson, J. B., Wellner, J. S., Bohaty, S. M., & Manley, P. L. (2009). High-resolution Holocene climate record from Maxwell Bay, South Shetland Islands, Antarctica. Bulletin of the Geological Society of America, 121, 17111725.CrossRefGoogle Scholar
Moreton, S.G., & Smellie, J. L. (1998). Identification and correlation of distal tephra layers in deep-sea sediment cores, Scotia Sea, Antarctica. Annals of Glaciology, 27, 285289.CrossRefGoogle Scholar
Mulvaney, R., Abram, N. J., Hindmarsh, R. C., Arrowsmith, C., Fleet, L., Triest, J., … Foord, S. (2012). Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history. Nature, 489, 141144.CrossRefGoogle ScholarPubMed
Navarro, F., Jonsell, U., Corcuera, M. I., & Martín-Español, A. (2013). Decelerated mass loss of Hurd and Johnsons Glaciers, Livingston Island, Antarctic Peninsula. Journal of Glaciology, 59(213), 115128.CrossRefGoogle Scholar
Ó Cofaigh, C., Davies, B. J., Livingstone, S. J., Smith, J. A., Johnson, J. S., Hocking, E. P., … Simms, A. R. (2014). Reconstruction of ice-sheet changes in the Antarctic Peninsula since the Last Glacial Maximum. Quaternary Science Reviews, 100, 87110.CrossRefGoogle Scholar
Oliva, M., Antoniades, D., Giralt, S., Granados, I., Pla-Rabes, S., Toro, M., … Vieira, G. (2016). The Holocene deglaciation of the Byers Peninsula (Livingston Island, Antarctica) based on the dating of lake sedimentary records. Geomorphology, 261, 89102.CrossRefGoogle Scholar
Oliva, M., Hrbáček, F., Ruiz-Fernández, J., De Pablo, M. A., Vieira, G., Ramos, M., & Antoniades, D. (2017b). Active layer dynamics in three topographically distinct lake catchments in Byers Peninsula (Livingston Island, Antarctica). Catena, 149(2), 548559.CrossRefGoogle Scholar
Oliva, M., Navarro, F. J., Hrbáček, F., Hernández, A., Nývlt, D., Pereira, P., … Trigo, R. (2017a). Recent regional cooling of the Antarctic Peninsula and its impacts on the cryosphere. Science of the Total Environment, 580, 210223.CrossRefGoogle ScholarPubMed
Oliva, M., & Ruiz-Fernández, J. (2015). Coupling patterns between paraglacial and permafrost degradation responses in Antarctica. Earth Surface Processes and Landforms, 40(9), 12271238.CrossRefGoogle Scholar
Osmanoğlu, B., Braun, M., Hock, R., & Navarro, F.J. (2013). Surface velocity and ice discharge of the ice cap on King George Island, Antarctica. Annals of Glaciology, 54(63), 111119.CrossRefGoogle Scholar
Píšková, A., Roman, M., Bulínová, M., Pokorný, M., Sanderson, D., Cresswell, A., … Kopalová, K. (2019). Late-Holocene palaeoenvironmental changes at Lake Esmeralda (Vega Island, Antarctic Peninsula) based on a multi-proxy analysis of laminated lake sediment. The Holocene, doi: 10.1177/0959683619838033.CrossRefGoogle Scholar
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., … van der Plicht, J. (2013). IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon, 55(4), 18691887.CrossRefGoogle Scholar
Roberts, S. J., Monien, P., Foster, L. C., Loftfield, J., Hocking, E. P., Schnetger, B., … Hodgson, D. A. (2017). Past penguin colony responses to explosive volcanism on the Antarctic Peninsula. Nature Communications, 8, 14914.CrossRefGoogle ScholarPubMed
Ruiz-Fernández, J., & Oliva, M. (2016). Relative palaeoenvironmental adjustments following deglaciation of the Byers Peninsula (Livingston Island, Antarctica). Arctic, Antarctic and Alpine Research, 48(2), 345359.CrossRefGoogle Scholar
Ruiz-Fernández, J., Oliva, M., & García-Hernández, C. (2017). Topographic and geomorphologic controls on the distribution of vegetable formations in Elephant Point (Livingston Island, Maritime Antarctica). Science of the Total Environment, 587–588, 340349.CrossRefGoogle Scholar
Ruiz-Fernández, J., Oliva, M., Nývlt, D., Cannone, N., García-Hernández, C., Guglielmin, M., … López-Martínez, J. (2019). Paraglacial response since the Last Glacial Maximum in the Antarctic Peninsula region. Earth-Science Reviews, 192, 379402.CrossRefGoogle Scholar
Schuur, E. A., Vogel, J. G., Crummer, K. G., Lee, H., Sickman, J. O., & Osterkamp, T. E. (2009). The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature, 459, 556559.CrossRefGoogle ScholarPubMed
Seehaus, T., Cook, A. J., Silva, A. B., & Braun, M. (2018). Changes in glacier dynamics in the northern Antarctic Peninsula since 1985. The Cryosphere, 12, 577594.CrossRefGoogle Scholar
Seong, Y. B., Owen, L. A., Lim, H. S., Yoon, H. I., Kim, Y., Lee, Y. I. & Caffee, M. W. (2009). Rate of late Quaternary ice-cap thinning on King George Island, South Shetland Islands, West Antarctica, defined by cosmogenic 36Cl surface exposure dating. Boreas, 38, 207213.CrossRefGoogle Scholar
Serrano, E., & López-Martínez, J. (2004). Morfogénesis periglaciar y deglaciación en las penínsulas Barton y Weaver (islas Shetland del Sur, Antártida). Boletín Real Sociedad Española de Historia Natural, 99(1–4), 131140.Google Scholar
Shevenell, A. E., Ingalls, A. E., Domack, E. W., & Kelly, C. (2011). Holocene Southern Ocean surface temperature variability west of the Antarctic Peninsula. Nature, 470, 250254.CrossRefGoogle ScholarPubMed
Simms, A. R., Milliken, K. T., Anderson, J. B., & Wellner, J. S. (2011). The marine record of deglaciation of the South Shetland Islands, Antarctica since the Last Glacial Maximum. Quaternary Science Reviews, 30, 15831601.CrossRefGoogle Scholar
Simoes, C. L., Rosa, K. K., Czapela, F. F., Vieira, R., & Simoes, J. C. (2015). Collins glacier retreat process and regional climatic variations, King George Island, Antarctica. Geographical Review, 105, 462471.CrossRefGoogle Scholar
Smellie, J. L. (2001). Lithostratigraphy and volcanic evolution of Deception Island, South Shetland Islands. Antarctic Science, 13, 188209.CrossRefGoogle Scholar
Stenni, B., Buiron, D., Frezzoti, M., Albani, S., Barbante, C., Bard, E., … Udisti, R. (2011). Expression of the bipolar see-saw in Antarctic climate records during the last deglaciation. Nature Geoscience, 4, 4649.CrossRefGoogle Scholar
Toro, M., Granados, I., Pla, S., Giralt, S., Antoniades, D., Galán, L., … Appleby, P. G. (2013). Chronostratigraphy of the sedimentary record of Limnopolar Lake, Byers Peninsula, Livingston Island, Antarctica. Antarctic Science, 25, 198212.CrossRefGoogle Scholar
Turner, J., Colwell, S. R., Marshall, G. J., Lachlan-Cope, T. A., Carleton, A. M., Jones, P. D., … Iagovkina, S. (2005). Antarctic climate change during last 50 years. International Journal of Climatolology, 25, 279294.CrossRefGoogle Scholar
Vieira, G., Bockheim, J., Guglielmin, M., Balks, M., Abramov, A. A., Boelhouwers, J., … Wagner, D. (2010). Thermal state of permafrost and active-layer monitoring in the Antarctic: advances during the International Polar Year 2007–09. Permafrost and Periglacial Processes, 21(2), 182197.CrossRefGoogle Scholar
Vonk, J. E., Tank, S. E., Bowden, W. B., Laurion, I., Vincent, W. F., Alekseychik, P., … Wickland, K. P. (2015). Review and Syntheses: effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences, 12, 71297167.CrossRefGoogle Scholar
Watcham, E. P., Bentley, M. J., Hodgson, D. A., Roberts, S. J., Fretwell, P. T., Lloyd, J. M., … Moreton, S. G. (2011). A new relative sea level curve for the South Shetland Islands, Antarctica. Quaternary Science Reviews, 30, 31523170.CrossRefGoogle Scholar
Yoon, H. I., Han, M. W., Park, B. K., Oh, J. K., & Chang, S. K. (1997). Glaciomarine sedimentation and paleo-glacial setting of Maxwell Bay and its tributary embayment, Marian Cove, South Shetland Island, West Antarctica. Marine Geology, 140, 265282.CrossRefGoogle Scholar
Supplementary material: File

Oliva et al. supplementary material

Oliva et al. supplementary material

Download Oliva et al. supplementary material(File)
File 52.4 KB