Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-23T16:47:23.957Z Has data issue: false hasContentIssue false

Pigment, fatty acid and extracellular enzyme analysis of a fungal strain Thelebolus microsporus from Larsemann Hills, Antarctica

Published online by Cambridge University Press:  07 January 2013

Shiv M. Singh
Affiliation:
National Centre for Antarctic and Ocean Research, Vasco Da Gama, Goa 403804, India ([email protected])
Paras N. Singh
Affiliation:
Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, India
Sanjay K. Singh
Affiliation:
Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, India
Prabhat K. Sharma
Affiliation:
Botany Department, Goa University, Taleigao Plateau, Goa 403206, India

Abstract

A cold-tolerant fungal strain Thelebolus microsporus was investigated for the first time for its pigment and fatty acid production. High-performance liquid chromatography analysis confirmed the presence of carotenoid pigment. Gas chromatography observations showed the presence of major fatty acids: myristic acid (14:0), palmitic acid (16:0), stearic acid (18:0), heptadecanoic acid (17:0), linolenic acid (18:3) and linoleic acid (18:2). Of these, linolenic acid, a polyunsaturated fatty acid, was present in substantial quantity, suggesting that it may have a role in adapting the fungus to low Antarctic temperatures by modulating membrane fluidity. The commercial application of linolenic acid is as a food supplement for humans suffering from eczema, cardiovascular disease and diabetic neuropathy. Another fatty acid, linoleic acid, a precursor of 1-octen-3-ol, is the principal aromatic compound in most fungi and has also been documented in this strain. Screening of the fungal culture for extracellular enzyme activity for amylase, protease, lipase, chitinase and cellulase was carried out. The isolate showed maximum α-amylase activity at 20°C, suggesting effective applications as a detergent additive, in textile processing and in the food industry.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azmi, O.R., and Seppelt, R.D.. 1998. The broadscale distribution of microfungi in the Windmill Islands region, continental Antarctica. Polar Biology 19: 92100.CrossRefGoogle Scholar
Bej, A.K., and Mojib, N.. 2010. Cold adaptation in Antarctic biodegradative microorganisms. In: Bej, A.K., Aislabie, J. and Atlas, R.M. (editors). Polar microbiology: the ecology, biodiversity and bioremediation potential of microorganisms in extremely cold environments. Boca Raton: CRC Press: 157178.Google Scholar
Bhandari, R., and Sharma, P.K.. 2006. Ultraviolet-B induced changes on photosynthesis, membrane lipids and UV-B absorbing compounds in marine cyanobacterium, Phormidium corium. Indian Journal of Experimental Biology 44: 330335.Google Scholar
Christie, W.W. 1982. Lipid analysis. Oxford: Pergamon Press.Google Scholar
De Hoog, G.S., Gottlich, E., Platas, G., Genilloud, O., Leotta, G. and Brummelen, J. van. 2005. Evolution, taxonomy and ecology of the genus Thelebolus in Antarctica. Studies in Mycology 51: 3376.Google Scholar
Dieser, M., Greenwood, M. and Foreman, C.M.. 2010. Carotenoid pigmentation in Antarctic heterotrophic bacteria as a strategy to withstand environmental stresses. Arctic, Antarctic and Alpine Research 42: 396405.CrossRefGoogle Scholar
Feller, G., and Gerday, C.. 2003. Psychrophile enzymes: hot topics in cold adaptation. Nature Reviews Microbiology 1: 200208.CrossRefGoogle ScholarPubMed
Gawas-Sakhalkar, P., and Singh, S.M.. 2011. Fungal community associated with terrestrial Arctic moss, Tetraplodon minioides. Current Science 100: 17011705.Google Scholar
Gawas-Sakhalkar, P., Singh, S.M., Naik, S. and Ravindra, R.. 2012. High temperature optima phosphatases from the cold-tolerant Arctic fungus Penicillium citrinum. Polar Research 31, 11105. DOI: 10.3402/polar.v31i0.11105.CrossRefGoogle Scholar
Graeser, Y., Fari, M.L., Vilgalys, R., Kuijpers, A.F.A., de Hoog, G.S., Presber, W. and Tietz, H.J.. 1999. Phylogeny and taxonomy of the family Arthrodermataceae (dermatophytes) using sequence analysis of the ribosomal ITS region. Medical Mycology 37: 105114.CrossRefGoogle Scholar
Hankin, L. and Anagnostakis, S.L.. 1975. The use of solid media for detraction of enzyme production by fungi. Mycologia 67: 597607.CrossRefGoogle Scholar
Istokovics, A., Morita, N., Izumi, K., Hoshino, T., Yumoto, I., Sawada, M.T., Ishizaki, K. and Okuyama, H.. 1998. Neutral lipids, phospholipids, and a betaine lipid of the snow mould fungus Microdochium nivale. Canadian Journal of Microbiology 44: 10511059.CrossRefGoogle Scholar
Kerekes, R. and Nagy, G.. 1980. Membrane lipid composition of a mesophilic and psychrophilic yeast. Acta Alimentaria 9: 9398.Google Scholar
Kobayashi, Y., Hibatsuka, N., Korf, R.P., Tubaki, K., Aoshima, K., Soneda, M. and Sugiyama, J.. 1967. Mycological studies of the Alaskan Arctic. Institute of Fermentation Annual Report 3: 5051.Google Scholar
Kranner, I., and Birtic, S.A.. 2005. Modulating role for antioxidants in desiccation tolerance. Integrative Comparative Biology 45: 734740.CrossRefGoogle ScholarPubMed
Leotta, G.A., Pare, J.A., Sigler, L., Montalti, D., Vigo, G., Petruccelli, M. and Reinoso, E.H.. 2002. Thelebolus microspores mycelia mats in the trachea of wild brown skua (Catharacta lonnbergi) and south polar skua (C. maccormicki) carcasses. Journal of Wildlife Disease 38: 443447.CrossRefGoogle Scholar
Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J.. 1951. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193: 265275.CrossRefGoogle ScholarPubMed
Männistö, M., and Häggblom, M.M.. 2006. Characterization of psychrotolerant heterotrophic bacteria from Finnish Lapland. Sytematic and Applied Microbiology 29: 229243.CrossRefGoogle ScholarPubMed
Margesin, R., Neuner, G. and Storey, K.B.. 2007. Cold-loving microbes, plants, and animals – fundamental and applied aspects. Naturwissenschaften 94: 7799.CrossRefGoogle ScholarPubMed
Medigue, C., Krin, E., Pascal, G., Barbe, V., Bernsel, A., Bertin, P.N., Cheung, F., Cruveiller, S., D'Amico, S., Duilio, A., Fang, G., Feller, G., Ho, C., Mangenot, S., Marino, G., Nilsson, J., Parrilli, E., Rocha, E.P.C., Rouy, Z., Sekowska, A., Tutino, M.L., Vallenet, D., von Heijne, G. and Danchin, A.. 2005. Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Research 15: 13251335.CrossRefGoogle ScholarPubMed
Miller, G.L. 1959. The use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry 31: 426429.CrossRefGoogle Scholar
Mishra, R.S., and Maheshwari, R.. 1996. Amylases of the thermophilic fungus Thermomyces lanuginosus: their purification, properties, action on starch and responses to heat. Journal of Biosciences 21: 653672.CrossRefGoogle Scholar
Mukherjee, G., and Singh, S.K.. 2011. Purification and characterization of a new red pigment from Monascus purpureus in submerged fermentation. Process Biochemistry 46: 188192.CrossRefGoogle Scholar
Onofri, S., Selbmann, L., Zucconi, L. and Pagano, S.. 2004. Antarctic microfungi as models for exobiology. Planetary and Space Science 52: 229237.CrossRefGoogle Scholar
Robinson, C.H. 2001. Cold adaptation in Arctic and Antarctic fungi. New Phytology 151: 341353.CrossRefGoogle Scholar
Russell, N.J. 1990. Cold adaptation of microorganisms. Philosophical Transactions of the Royal Society London B326: 595611.Google Scholar
Saitou, N., and Nei, M.. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406425.Google Scholar
Schiraldi, C., and De Rosa, M.. 2002. The production of biocatalysts and biomolecules from extremophiles. Trends in Biotechnology 20: 515521.CrossRefGoogle ScholarPubMed
Singh, P., Singh, A., D'Souza, L.M., Roy, U. and Singh, S.M.. 2012. Chemical constituents and antioxidant activity of Arctic mushroom Lycoperdon molle Pers. Polar Research 31, 17329. DOI: 10.3402/polar.v31i0.17329.CrossRefGoogle Scholar
Singh, S.M., Singh, P. and Ravindra, R.. 2011a. Screening of antioxidant potential from Arctic lichens. Polar Biology. DOI: 10.1007/s00300-011-1027–9.CrossRefGoogle Scholar
Singh, S.M., Singh, S.K., Yadav, L., Singh, P.N. and Ravindra, R.. 2012. Filamentous soil fungi from Ny-Ålesund, Spitsbergen and screening for extracellular enzymes. Arctic 65: 3555.CrossRefGoogle Scholar
Singh, S.M., Yadav, L., Singh, S.K., Singh, P., Singh, P.N. and Ravindra, R.. 2011b. Phosphate solubilizing ability of Arctic Aspergillus niger strains. Polar Research 30, 7283. DOI: 10.3402/polar.v30i0.7283.CrossRefGoogle Scholar
Tamura, K., Nei, M. and Kumar, S.. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences (USA) 101: 1103011035.CrossRefGoogle ScholarPubMed
Tamura, K., Dudley, J., Nei, M. and Kumar, S.. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 1696–1599.CrossRefGoogle ScholarPubMed
Vaz, J.F., and Sharma, P.K.. 2010. Adaptational changes in the lipids and fatty acid profile of the cell and thylakoid membrane of rice plants exposed to sunlight. Physiology and Molecular Biology of Plants 16: 229240.CrossRefGoogle ScholarPubMed
Weinstein, R.N., Montiel, P.O. and Johnstone, K.. 2000. Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic. Mycologia 92: 222229.CrossRefGoogle Scholar
White, T.J., Bruns, T., Lee, S. and Taylor, J.. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J. and White, T.J. (editors). PCR protocols: a guide to methods and applications. New York: Academic Press: 315322.Google Scholar
Wicklow, D.T., and Malloch, D.. 1971. Studies in the genus Thelebolus: temperature optima for growth and ascocarp development. Mycologia 63: 118131.CrossRefGoogle Scholar
Zhang, J-W., and Zeng, R-Y.. 2007. Purification and characterization of a cold-adapted α-amylase produced by Nocardiopsis sp. 7326 isolated from Prydz Bay, Antarctica. Marine Biotechnology. DOI: 10.1007/s10126-007-9035.Google Scholar