Hostname: page-component-669899f699-rg895 Total loading time: 0 Render date: 2025-04-27T18:58:59.116Z Has data issue: false hasContentIssue false

Strategic genetic amelioration of quality protein maize (QPM) germplasm and its utilization in hybrid breeding

Published online by Cambridge University Press:  23 September 2024

Ramesh Kumar*
Affiliation:
ICAR-Indian Institute of Maize Research, Ludhiana, Punjab, India
Abhijit Kumar Das
Affiliation:
ICAR-Indian Institute of Maize Research, Ludhiana, Punjab, India
Yashmeet Kaur
Affiliation:
ICAR-Indian Institute of Maize Research, Ludhiana, Punjab, India
Sushil Kumar
Affiliation:
ICAR-Indian Institute of Maize Research, Ludhiana, Punjab, India
Shanu Shukla
Affiliation:
ICAR-Indian Institute of Maize Research, Ludhiana, Punjab, India
Chikkappa GK
Affiliation:
ICAR-Indian Institute of Maize Research Unit office, New Delhi, India
Dharam Paul Chaudhary
Affiliation:
ICAR-Indian Institute of Maize Research, Ludhiana, Punjab, India
Sujay Rakshit
Affiliation:
Presently working as Director, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
*
Corresponding author: Ramesh Kumar; Email: [email protected]

Abstract

Use of diverse germplasm for generating heterotic hybrids is the foremost requirement in maize. The present study was conducted by using a diverse set of inbred lines and the line × tester method was applied to identify best performing lines and to group QPM inbred lines into different heterotic groups. The test crosses, developed by following line (66) × tester (CML 161 and CML 165) mating design, were evaluated during winter 2013, rainy 2014 and 2015 seasons at Begusarai and Ludhiana, respectively. Based on the specific combining ability, the lines were categorized into two heterotic groups. Out of 66 novel inbreds, 18 lines with significant SCA with CML165 were classified in group A, 16 inbreds with significant SCA with CML161 were classified in group B and 20 inbreds with significant GCA were classified in group (AB). Nine inbred lines were selected based on their positive GCA values and pedigree crosses were developed in rainy season in 2017. Three crosses were made in heterotic group A and four crosses were in group B for synthesizing new inbred lines by using pedigree method. Heterotic grouping based inbred evaluation trial and biochemical analysis were carried out to estimate per se yield potential of developed lines and to estimate tryptophan content. QIL-4-2491 (Group-A) and QIL-4-2401 (Group-B) were the top yielders. A total of 25 crosses were made among the heterotic groups (A and B) by using 22 lines from groups A and B and three best performing hybrids were identified.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of National Institute of Agricultural Botany

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Akinwale, RO, Badu-Apraku, B, Fakorede, MAB and Vroh-Bi, I (2014) Heterotic grouping of tropical early maturing maize inbred lines based on combining ability in Striga-infested and Striga-free environments and the use of SSR markers for genotyping. Field Crops Research 156, 4862.CrossRefGoogle Scholar
Amegbor, IK, Badu-Apraku, B and Annorn, B (2017) Combining ability and heterotic patterns of extra-early maturing white maize inbreds with genes from Zea diploperennis under multiple environments. International Journal of Plant Breeding 213, 24.Google Scholar
Annor, B, Badu-Apraku, B, Nyadanu, D, Akromah, R and Fakorede, MAB (2019) Identifying heterotic groups and testers for hybrid development in early maturing yellow maize (Zea mays) for sub-Saharan Africa. Plant Breeding 139, 708716.CrossRefGoogle Scholar
Arifin, NS, Nugraha, AA, Waluyo, B, Ardiarini, NR and Azrai, M (2018) Grouping in heterotic pool of maize inbred lines based on numerical and graphical analysis of combining ability. SABRAO Journal of Breeding and Genetics 50, 475493.Google Scholar
Arora, A, Das, AK, Dixit, S, Yathish, KR, Singh, SB, Sekhar, JC, Ravikesavan, R, Sahi, JP, Kumar, IS, Mahadevu, P and Swain, D (2024) Genetic diversity analysis and heterotic grouping of Indian white maize inbred lines using combining ability and SNP markers. Crop Science 64, 112.CrossRefGoogle Scholar
Babu, R and Prasanna, BM (2013) Molecular breeding for quality protein maize (QPM). In Tuberosa, R (ed.), Genomics of Plant Genetic Resources: Volume 2. Crop Productivity, Food Security and Nutritional Quality. Dordrecht: Springer Netherlands, pp. 489505.Google Scholar
Badu-Apraku, B, Annor, B, Oyekunle, M, Akinwale, RO, Fakorede, MAB, Talabi, AO, Akaogu, IC, Melaku, G and Fasanmade, Y (2015) Grouping of early maturing quality protein maize inbreds based on SNP markers and combining ability under multiple environments. Field Crops Research 183, 169183.CrossRefGoogle Scholar
Barata, C and Carena, M (2006) Classification of North Dakota maize inbred lines into heterotic groups based on molecular and testcross data. Euphytica 151, 339349.CrossRefGoogle Scholar
Bidhendi, MZ, Choukan, R, Darvish, F, Mostafavi, K and Majidi, E (2012) Classifying of maize inbred lines into heterotic groups using diallel analysis. International Journal of Agricultural and Biosystems Engineering 6, 556559.Google Scholar
Ceccarelli, S (2015) Efficiency of plant breeding. Crop Science 55, 8797.CrossRefGoogle Scholar
Chemeli, J (2016) Heterotic Grouping of Selected Inbred Lines of Maize (Zea mays L.) Using Two Testers in Kiambu and Embu Counties, Kenya (Master's thesis). Department of Pure and Applied Sciences, Kenyatta University, Nairobi, Kenya, p. 47.Google Scholar
Das, AK, Choudhary, M, Kumar, P, Karjagi, CG, Yathish, KR, Kumar, R, Singh, A, Kumar, S and Rakshit, S (2021) Heterosis in genomic era: advances in the molecular understanding and techniques for rapid exploitation. Critical Reviews in Plant Sciences 40, 218242.CrossRefGoogle Scholar
Erenstein, O, Jaleta, M, Sonder, K, Mottaleb, K and Prasanna, BM (2022) Global maize production, consumption and trade: trends and R&D implications. Food Security 14, 12951319.CrossRefGoogle Scholar
Fan, XM, Chen, HM, Tan, J, Xu, CX, Zhang, YD, Luo, LM, Huang, YX and Kang, MS (2008) Combining abilities for yield and yield components in maize. Maydica 53, 3946.Google Scholar
Fan, XM, Zhang, YM, Yao, WH, Chen, HM, Tan, J, Xu, CX, Han, XL, Luo, LM and Kang, MS (2009) Classifying maize inbred lines into heterotic groups using a factorial mating design. Agronomy Journal 101, 106112.CrossRefGoogle Scholar
Fan, XM, Zhang, YD, Yao, WH, Bi, YQ, Liu, L, Chen, HM and Kang, MS (2014) Reciprocal diallel crosses impact combining ability, variance estimation, and heterotic group classification. Crop Science 54, 8997.CrossRefGoogle Scholar
Fan, XM, Bi, YQ, Zhang, YD, Jeffers, DP, Yao, WH, Chen, HM, Zhao, LQ and Kang, MS (2015) Use of the Suwan1 heterotic group in maize breeding programs in southwestern China. Journal of Agronomy 107, 23532362.CrossRefGoogle Scholar
Fan, XM, Yin, XF, Zhang, YD, Bi, YQ, Liu, L, Chen, HM and Kang, MS (2016) Combining ability estimation for grain yield of maize exotic germplasm using testers from three heterotic groups. Crop Science 56, 25272535.CrossRefGoogle Scholar
FAO Stat (2021) FAO Stat. Rome: FAO. Available at http://www.fao.org/faostatGoogle Scholar
FAO/WHO (1990) A Joint FAO/WHO Expert Consultation on Protein Quality Evaluation. Rome.Google Scholar
Gardner, CO and Eberhart, SA (1966) Analysis and interpretation of the variety cross diallel and related populations. Biometrics 22, 439452.CrossRefGoogle ScholarPubMed
Griffing, B (1956) Concept of general and specific combining ability in relation to diallel crossing systems. Australian Journal of Biological Sciences 9, 463493.CrossRefGoogle Scholar
Grote, U, Fasse, A, Nguyen, TT and Erenstein, O (2021) Food security and the dynamics of wheat and maize value chains in Africa and Asia. Frontiers in Sustainable Food Systems 4, 617009.CrossRefGoogle Scholar
Hegyi, J, Schwartz, RA and Hegyi, V (2004) Pellagra: dermatitis, dementia, and diarrhea. International Journal of Dermatology 43, 15.CrossRefGoogle ScholarPubMed
Hernandes, H and Bates, LS (1969) A Modified Method for Rapid Tryptophan Analysis of Maize. Research Bulletin No. 19. Mexico: International Maize and Wheat Improvement Centre.Google Scholar
Iqbal, AM, Nehvi, FA, Wani, SA, Qadir, R and Zahoor, AD (2007) Combining ability analysis for yield and yield related traits in maize (Zea mays L.). International Journal of Plant Breeding and Genetics 1, 101105.CrossRefGoogle Scholar
Karjagi, CG, Phagna, RK, Neelam, S, Sekhar, JC, Singh, SB and Yathish, KR (2023) Identification of best testers for heterotic grouping of tropical maize inbred lines using GGE biplot. Crop Science 63, 20332049.CrossRefGoogle Scholar
Kaur, N, Kumar, R, Singh, A, Shobha, D, Das, AK, Chaudhary, D, Kaur, Y, Kumar, P, Sharma, P and Singh, B (2022) Improvement in nutritional quality of traditional unleavened flat bread using quality protein maize. Frontiers in Nutrition 9, 963368.CrossRefGoogle ScholarPubMed
Koutsika-Sotiriou, M (1999) Hybrid seed production in maize. In Basra, AS (ed.), Heterosis and Hybrid Seed Production in Agronomic Crops. New York: Food Products Press, pp. 2564.Google Scholar
Kumar, S, Das, AK, Naliath, R, Kumar, R, Karjagi, CG, Sekhar, JC, Vayas, M, Yathish, KR, Singh, A, Mukri, G and Rakshit, S (2022) Potential use of random and linked SSR markers in establishing the true heterotic pattern in maize (Zea mays). Crop and Pasture Science 73, 13451353.CrossRefGoogle Scholar
Mamatha, H, Meena, MK and Pushpa, CK (2017) Quality protein maize (QPM) as balance nutrition for human diet. Advance Plants Agriculture Research 6, 3335.Google Scholar
Menkir, A, Melake-Berhan, A, The, C, Ingelbrecht, I and Adepoju, A (2004) Grouping of tropical mid-altitude maize inbred lines on the basis of yield data and molecular markers. Theoretical and Applied Genetics 108, 15821590.CrossRefGoogle ScholarPubMed
Mertz, ET, Bates, L and Nelson, OE (1964) Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science 145, 279280.CrossRefGoogle ScholarPubMed
Nepir, G, Gissa, DW and Zeleke, H (2015) Heterosis and combining ability of highland quality protein maize inbred lines. Maydica 60, 112.Google Scholar
Nuss, ET and Tanumihardjo, SA (2010) Maize: a paramount staple crop in the context of global nutrition. Comprehensive Reviews in Food Science and Food Safety 9, 417436.CrossRefGoogle Scholar
Olayiwola, MO (2018) Genetic Analysis of Maize (Zea mays L.) Inbred Lines and Hybrid Performance under Artificial Stem Borer Infestation, Low Nitrogen and Non-Stress Environments (PhD rhesis). Department of Plant Breeding and Seed Technology, Federal University of Agriculture, Abeokuta, Nigeria, p. 46.Google Scholar
Pixley, KV and Bjarnason, MS (1993) Combining ability for yield and protein quality among modified endosperm opaque-2 tropical maize inbreds. Crop Science 33, 12291234.CrossRefGoogle Scholar
Ricci, GC, Silva, N, Pagliarini, MS and Scapim, CA (2007) Microsporogenesis in inbred line of popcorn (Zea mays L.). Genetics and Molecular Research 6, 10131018.Google ScholarPubMed
SAS Software SAS Institute Inc. (2011) Base SAS® 9.3 Procedures Guide. Cary, NC: SAS Institute Inc.Google Scholar
Shams, R, Choukan, R, Eslam, M and Farokh, D (2010) Estimation of combining ability and gene action in maize using line x tester method under three irrigation regimes. Journal of Research in Agricultural Science 6, 1928.Google Scholar
Sharma, J, Sharma, S, Karnatam, KS, Raigar, OP, Lahkar, C, Saini, DK, Kumar, S, Singh, A, Das, AK, Sharma, P and Kumar, R (2023) Surveying the genomic landscape of silage-quality traits in maize (Zea mays L.). The Crop Journal 11, 18931901.CrossRefGoogle Scholar
Singode, A, Manivannan, A, Ahmad, B, Srivastava, E and Mahajan, V (2017) Heterotic grouping in early maturing Indian maize lines. International Journal of Agriculture Innovations and Research 6, 5762.Google Scholar
Sprague, GF and Tatum, LA (1942) General versus specific combining ability in single crosses of corn. Journal of American Society of Agronomy 34, 923932.CrossRefGoogle Scholar
SPSS Software. IBM Corp. Released (2021) IBM SPSS Statistics for Windows, Version 28.0. Armonk, NY: IBM Corp.Google Scholar
Undie, UL, Uwah, DF and Attoe, EE (2012) Effect of intercropping and crop arrangement on yield and productivity of late season maize/soybean mixtures in the humid environment of south southern Nigeria. Journal of Agricultural Science 4, 3750.CrossRefGoogle Scholar
Vasal, SK (1994) High quality protein corn. In Hallauuer, AR (ed.), Specialty Corns. Boca Raton, FL: CRC Press, pp. 80121.Google Scholar
Vasal, SK (1999) Quality protein maize story. In: A Workshop hosted by the International Rice Research Institute, Los Banos, Philippines organized by the International Food Policy Research Institute.Google Scholar
Vasal, SK (2000) The quality protein maize story. Food and Nutrition Bulletin 21, 445450.CrossRefGoogle Scholar
Vietmeyer, ND (2000) A drama in three long acts: the story behind the story of the development of quality-protein maize. Diversity 16, 2932.Google Scholar
Yathish, KR, Karjagi, CG, Gangoliya, SS, Gadag, RN, Mallikarjuna, MG, Sekhar, JC, Das, AK, Soujanya, PL, Kumar, R, Singh, A and Singh, SB (2023) Development of low-phytate maize inbred lines through marker-assisted introgression of lpa1. Crop and Pasture Science 74, 843855.CrossRefGoogle Scholar
Supplementary material: File

Kumar et al. supplementary material

Kumar et al. supplementary material
Download Kumar et al. supplementary material(File)
File 53.9 KB