Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-14T21:25:36.576Z Has data issue: false hasContentIssue false

QTL mapping for stripe rust and powdery mildew resistance in Triticum durumAegilops speltoides backcross introgression lines

Published online by Cambridge University Press:  17 August 2020

Guriqbal Singh Dhillon
Affiliation:
School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
Satinder Kaur
Affiliation:
School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
Niranjan Das
Affiliation:
Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
Rohtas Singh
Affiliation:
School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
Jesse Poland
Affiliation:
Wheat Genetics Resource Centre, Kansas State University, Manhattan, KS, USA
Jaspal Kaur
Affiliation:
Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
Parveen Chhuneja*
Affiliation:
School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
*
*Corresponding author. E-mail: [email protected]

Abstract

Wheat, a major food crop, faces significant yield constraints due to losses caused by various diseases, especially rusts and powdery mildew. Since the causal organisms are always evolving, there is a never-ending hunt for new genes/quantitative trait loci (QTLs) for resistance to control the damage. For this purpose, Triticum durumAegilops speltoides backcross introgression lines (DS-BILs) developed in our wide hybridization programme were screened against stripe rust and powdery mildew at both seedling and adult plant stages. DS-BILs showed complete to moderate resistance at the adult plant stage while varying resistance and susceptibility at the seedling stage. A total of 1095 single-nucleotide polymorphisms (SNPs) identified on 14 chromosomes of T. durum, using genotyping by sequencing, were used for QTL mapping. Eleven unique QTLs, across six chromosomes (chr1B, chr2A, chr2B, chr3B, chr6B and chr7B) were identified for resistance, four QTLs for field mixture of stripe rust pathotypes, two QTLs for stripe rust pathotype 78S84 and five QTLs for field mixture of powdery mildew pathotypes using stepwise regression-based likelihood ratio test for additive effect of markers and single-marker analysis. Eleven DS-BILs carrying multiple QTLs were identified which will serve as a useful resource to transfer the respective resistance to susceptible cultivars to develop all stage resistant elite cultivars where QTL for stripe rust resistance QYrAs.pau-2A.1 (LOD 3.8, PVE 24.51 linked to SNP S2A_16016633) and QTL for powdery mildew resistance QPmAs.pau-6B (logarithm of the odds (LOD) 3.2, phenotypic variation explained (PVE) 17.75 linked to SNP S6B_26793381) are major targets of the transfer.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of NIAB

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Awlachew, ZT, Singh, R, Kaur, S, Bains, NS and Chhuneja, P (2016) Transfer and mapping of the heat tolerance component traits of Aegilops speltoides in tetraploid wheat Triticum durum. Molecular Breeding 36: 7892.10.1007/s11032-016-0499-2CrossRefGoogle Scholar
Babiychuk, E, Vandepoele, K, Wissing, J, Garcia-Diaz, M, De Rycke, R, Akbari, H, Joubès, J, Beeckman, T, Jänsch, L, Frentzen, M, Van Montagu, MCE and Kushnir, S (2011) Plastid gene expression and plant development require a plastidic protein of the mitochondrial transcription termination factor family. Proceedings of the National Academy of Sciences of the United States of America 108: 66746679.10.1073/pnas.1103442108CrossRefGoogle ScholarPubMed
Bansal, M, Kaur, S, Dhaliwal, HS, Bains, NS, Bariana, HS, Chhuneja, P and Bansal, UK (2017) Mapping of Aegilops umbellulata-derived leaf rust and stripe rust resistance loci in wheat. Plant Pathology 66: 3844.10.1111/ppa.12549CrossRefGoogle Scholar
Bariana, H, Forrest, K, Qureshi, N, Miah, H, Hayden, M and Bansal, U (2016) Adult plant stripe rust resistance gene Yr71 maps close to Lr24 in chromosome 3D of common wheat. Molecular Breeding 36: 98.10.1007/s11032-016-0528-1CrossRefGoogle Scholar
Ben-David, R, Peleg, Z, Dinoor, A, Saranga, Y, Korol, AB and Fahima, T (2014) Genetic dissection of quantitative powdery mildew resistance loci in tetraploid wheat. Molecular Breeding 34: 16471658.10.1007/s11032-014-0178-0CrossRefGoogle Scholar
Bouzroud, S, Gouiaa, S, Hu, N, Bernadac, A, Mila, I, Bendaou, N, Smouni, AA, Bouzayen, M and Zouine, M (2018) Auxin response factors (ARFs) are potential mediators of auxin action in tomato response to biotic and abiotic stress (Solanum lycopersicum). PLoS ONE 13: e0193517 120. doi: 10.1371/journal.pone.0193517.CrossRefGoogle Scholar
Chen, XM (2005) Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Canadian Journal of Plant Pathology 27: 314337.10.1080/07060660509507230CrossRefGoogle Scholar
Chen, X, Feng, F, Qi, W, Xu, L, Yao, D, Wang, Q and Song, R (2017) Dek35 encodes a PPR protein that affects cis-splicing of mitochondrial nad4 intron 1 and seed development in maize. Molecular Plant 10: 427441.10.1016/j.molp.2016.08.008CrossRefGoogle ScholarPubMed
Colas, I, Shaw, P, Prieto, P, Wanous, M, Spielmeyer, W, Mago, R and Moore, G (2008) Effective chromosome pairing requires chromatin remodeling at the onset of meiosis. Proceedings of the National Academy of Sciences of the United States of America 105: 60756080.10.1073/pnas.0801521105CrossRefGoogle ScholarPubMed
Colmer, TD, Flowers, TJ and Munns, R (2006) Use of wild relatives to improve salt tolerance in wheat. Journal of Experimental Botany 57: 10591078.10.1093/jxb/erj124CrossRefGoogle ScholarPubMed
DeYoung, BJ and Innes, RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nature Immunology 7: 12431249.10.1038/ni1410CrossRefGoogle ScholarPubMed
Dielen, A-S, Badaoui, S, Candresse, T and German-Retana, S (2010) The ubiquitin/26S proteasome system in plant-pathogen interactions: a never-ending hide-and-seek game. Molecular Plant Pathology 11: 293308.10.1111/j.1364-3703.2009.00596.xCrossRefGoogle ScholarPubMed
Dubey, N and Singh, K (2018) Role of NBS-LRR proteins in plant defense. In: Singh, A. & Singh, I. K. (eds.) Molecular Aspects of Plant-Pathogen Interaction. Singapore: Springer, pp. 115138.10.1007/978-981-10-7371-7_5CrossRefGoogle Scholar
Elkot, AFA, Chhuneja, P, Kaur, S, Saluja, M, Keller, B and Singh, K (2015) Marker assisted transfer of two powdery mildew resistance genes PmTb7A.1 and PmTb7A.2 from Triticum boeoticum (Boiss.) to Triticum aestivum (L.). PLoS ONE 10: e0128297.10.1371/journal.pone.0128297CrossRefGoogle Scholar
Feuillet, C, Schachermayr, G and Keller, B (1997) Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant Journal 11: 4552.10.1046/j.1365-313X.1997.11010045.xCrossRefGoogle Scholar
Figueroa, M, Hammond-kosack, KIME and Peter, S (2018) A review of wheat diseases – a field perspective. Molecular Plant Pathology 19: 15231536.10.1111/mpp.12618CrossRefGoogle Scholar
Fu, J and Wang, S (2011) Insights into auxin signaling in plant? Pathogen interactions. Frontiers in Plant Science 2: 17. doi: 10.3389/fpls.2011.00074.CrossRefGoogle ScholarPubMed
Ghanashyam, C and Jain, M (2009) Role of auxin-responsive genes in biotic stress responses. Plant Signaling & Behavior 4: 846848.10.4161/psb.4.9.9376CrossRefGoogle ScholarPubMed
Glaubitz, JC, Casstevens, TM, Lu, F, Harriman, J, Elshire, RJ, Sun, Q and Buckler, ES (2014) TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS ONE 9: 112.10.1371/journal.pone.0090346CrossRefGoogle ScholarPubMed
Gullner, G and Kômíves, T (2007) Defense reactions of infected plants: roles of glutathione and glutathione S-transferase enzymes. Acta Phytopathologica et Entomologica Hungarica 41: 310.10.1556/APhyt.41.2006.1-2.1CrossRefGoogle Scholar
Gullner, G, Komives, T, Király, L and Schröder, P (2018) Glutathione S-transferase enzymes in plant-pathogen interactions. Frontiers in Plant Science 9: 119. doi: 10.3389/fpls.2018.01836.CrossRefGoogle ScholarPubMed
Jones, JDG and Dangl, JL (2006) The plant immune system. Nature 444: 323329.10.1038/nature05286CrossRefGoogle ScholarPubMed
Jones, JDG, Vance, RE and Dangl, JL (2016) Intracellular innate immune surveillance devices in plants and animals. Science 354: 18. doi: 10.1126/science.aaf6395.CrossRefGoogle ScholarPubMed
Kankwatsa, P, Singh, D, Thomson, PC, Babiker, EM, Bonman, JM, Newcomb, M and Park, RF (2017) Characterisation and genome-wide association mapping of resistance to leaf rust, stem rust and stripe rust in a geographically diverse collection of spring wheat landraces. Molecular Breeding 37: 113.10.1007/s11032-017-0707-8CrossRefGoogle Scholar
Kaur, S, Jindal, S, Kaur, M and Chhuneja, P (2018) Utilisation of wild species for wheat improvement using genomic approaches. In: Biotechnologies of Crop Improvement, vol. 3, Switzerland: Springer International Publishing, pp. 105150.10.1007/978-3-319-94746-4_6CrossRefGoogle Scholar
King, J, Grewal, S, Yang, CY, Hubbart Edwards, S, Scholefield, D, Ashling, S, Harper, JA, Allen, AM, Edwards, KJ, Burridge, AJ and King, IP (2018) Introgression of Aegilops speltoides segments in Triticum aestivum and the effect of the gametocidal genes. Annals of Botany 121: 229240.10.1093/aob/mcx149CrossRefGoogle ScholarPubMed
Kishii, M (2019) An update of recent use of Aegilops species in wheat breeding. Frontiers in Plant Science 10: 585.10.3389/fpls.2019.00585CrossRefGoogle ScholarPubMed
Kuźniak, E (2010) The ascorbate-gluathione cycle and related redox signals in plant-pathogen interactions. In: Anjum, N.A., Umar, S., & Chan, M.T. (eds.) Ascorbate-Glutathione Pathway and Stress Tolerance in Plants. Netherlands: Springer, pp. 115136.10.1007/978-90-481-9404-9_4CrossRefGoogle Scholar
Lan, C, Rosewarne, GM, Singh, RP, Herrera-Foessel, SA, Huerta-Espino, J, Basnet, BR, Zhang, Y and Yang, E (2014) QTL characterisation of resistance to leaf rust and stripe rust in the spring wheat line francolin#1. Molecular Breeding 34: 789803.10.1007/s11032-014-0075-6CrossRefGoogle Scholar
Lan, C, Hale, IL, Herrera-Foessel, SA, Basnet, BR, Randhawa, MS, Huerta-Espino, J, Dubcovsky, J and Singh, RP (2017) Characterisation and mapping of leaf rust and stripe rust resistance loci in hexaploid wheat lines UC1110 and PI610750 under Mexican environments. Frontiers in Plant Science 8: 111.10.3389/fpls.2017.01450CrossRefGoogle Scholar
Lee, HA and Yeom, SI (2015) Plant NB-LRR proteins: tightly regulated sensors in a complex manner. Briefings in Functional Genomics 14: 233242.10.1093/bfgp/elv012CrossRefGoogle Scholar
Liu, Y, Wang, L, Deng, M, Li, Z, Lu, Y, Wang, J, Wei, Y and Zheng, Y (2015) Genome-wide association study of phosphorus-deficiency-tolerance traits in Aegilops tauschii. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik 128: 22032212. doi: 10.1007/s00122-015-2578-x.CrossRefGoogle ScholarPubMed
Liu, W, Maccaferri, M, Rynearson, S, Letta, T, Zegeye, H, Tuberosa, R, Chen, X and Pumphrey, M (2017) Novel sources of stripe rust resistance identified by genome-wide association mapping in Ethiopian durum wheat (Triticum turgidum ssp. durum). Frontiers in Plant Science 8: 774788.10.3389/fpls.2017.00774CrossRefGoogle Scholar
Maccaferri, M, Zhang, J, Bulli, P, Abate, Z, Chao, S, Cantu, D, Bossolini, E, Chen, X, Pumphrey, M and Dubcovsky, J (2015) A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.). G3: Genes, Genomes, Genetics 5: 449465.10.1534/g3.114.014563CrossRefGoogle Scholar
Marino, D, Peeters, N and Rivas, S (2012) Ubiquitination during plant immune signaling. Plant Physiology 160: 1527. doi: 10.1104/pp.112.199281.CrossRefGoogle ScholarPubMed
McHale, L, Tan, X, Koehl, P and Michelmore, RW (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biology 7: 111. doi: 10.1186/gb-2006-7-4-212.CrossRefGoogle ScholarPubMed
McIntosh, RA, Dubcovsky, J, Rogers, WJ, Morris, C and Xia, XC (2017) Catalogue of Gene Symbols for Wheat: 2017 Supplement, 120.Google Scholar
Millet, E (2007) Exploitation of Aegilops species of section Sitopsis for wheat improvement. Israel Journal of Plant Sciences 55(3–4): 277287. doi: 10.15607.CrossRefGoogle Scholar
Monneveux, P, Zaharieva, M, and Rekika, D (2000) The utilisation of Triticum and Aegilops species for the improvement of durum wheat. In: Royo, C., Nachit, M., Di Fonzo, N., & Araus, J. L., (eds.) Durum wheat improvement in the Mediterranean region: New challenges, Zaragoza: CIHEAM, pp. 7181. (Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 40).Google Scholar
Niks, RE, Qi, X and Marcel, TC (2015) Quantitative resistance to biotrophic filamentous plant pathogens: concepts, misconceptions, and mechanisms. Annual Review of Phytopathology 53: 445470.10.1146/annurev-phyto-080614-115928CrossRefGoogle ScholarPubMed
Paciolla, C, Paradiso, A and De Pinto, MC (2016) Cellular redox homeostasis as central modulator in plant stress response. In: Gupta, D. K., Palma, J. M., & Corpas, F. J. (eds.) Redox State as a Central Regulator of Plant-Cell Stress Responses, Cham, Switzerland: Springer International Publishing. pp. 123.Google Scholar
Pan, Z, Ren, X, Zhao, H, Liu, L, Tan, Z and Qiu, F (2019) A mitochondrial transcription termination factor, ZmSmk3, is required for nad1 Intron4 and nad4 Intron1 splicing and kernel development in maize. G3 : Genes Genomes Genetics 9: 26772686.10.1534/g3.119.400265CrossRefGoogle ScholarPubMed
Potters, G, Horemans, N and Jansen, MAK (2010) The cellular redox state in plant stress biology – a charging concept. Plant Physiology and Biochemistry 48: 292300.10.1016/j.plaphy.2009.12.007CrossRefGoogle ScholarPubMed
Qin, B, Chen, T, Cao, A, Wang, H, Xing, L, Ling, H, Wang, D, Yu, C, Xiao, J, Ji, J, Chen, X, Chen, P, Liu, D and Wang, X (2012) Cloning of a conserved receptor-like protein kinase gene and its use as a functional marker for homoeologous group-2 chromosomes of the Triticeae species. PLoS ONE 7. e49718: 1–11. doi: 10.1371/journal.pone.0049718.CrossRefGoogle ScholarPubMed
Rawat, N, Tiwari, VK, Singh, N, Randhawa, GS, Singh, K, Chhuneja, P and Dhaliwal, HS (2008) Evaluation and utilisation of Aegilops and wild Triticum species for enhancing iron and zinc content in wheat. Genetic Resources and Crop Evolution 56: 53.10.1007/s10722-008-9344-8CrossRefGoogle Scholar
Sadanandom, A, Bailey, M, Ewan, R, Lee, J and Nelis, S (2012) The ubiquitin-proteasome system: central modifier of plant signalling. New Phytologist 196: 1328. doi: 10.1111/j.1469-8137.2012.04266.x.CrossRefGoogle ScholarPubMed
Saghai-Maroof, MA, Soliman, KM, Jorgensen, RA and Allard, RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proceedings of the National Academy of Sciences 81: 8014 LP8018.10.1073/pnas.81.24.8014CrossRefGoogle ScholarPubMed
Sarowar, S, Eui, NK, Young, JK, Sung, HO, Ki, DK, Byung, KH and Jeong, SS (2005) Overexpression of a pepper ascorbate peroxidase-like 1 gene in tobacco plants enhances tolerance to oxidative stress and pathogens. Plant Science 169: 5563.10.1016/j.plantsci.2005.02.025CrossRefGoogle Scholar
Shi, G, Zhang, Z, Friesen, TL, Raats, D, Fahima, T, Brueggeman, RS, Lu, S, Trick, HN, Liu, Z, Chao, W, Frenkel, Z, Xu, SS, Rasmussen, JB and Faris, JD (2016) The hijacking of a receptor kinase-driven pathway by a wheat fungal pathogen leads to disease. Science Advances 2: 19. doi: 10.1126/sciadv.1600822.CrossRefGoogle ScholarPubMed
Tang, D, Ade, J, Frye, CA and Innes, RW (2005) Regulation of plant defense responses in Arabidopsis by EDR2, a PH and START domain-containing protein. Plant Journal 44: 245257.10.1111/j.1365-313X.2005.02523.xCrossRefGoogle Scholar
Tang, D, Wang, G and Zhou, JM (2017) Receptor kinases in plant-pathogen interactions: more than pattern recognition. Plant Cell 29: 618637.10.1105/tpc.16.00891CrossRefGoogle ScholarPubMed
Taylor, P, Street, M, Wt, L, Signaling, P, Dubreuil-maurizi, C, Poinssot, B, Dubreuil-maurizi, C and Poinssot, B (2012) Stress role of glutathione in plant signaling under biotic stress© 2012 Landes Bioscience. doi: 10.4161/psb.18831.CrossRefGoogle Scholar
Üstün, S, Sheikh, A, Gimenez-Ibanez, S, Jones, A, Ntoukakis, V and Börnke, F (2016) The proteasome acts as a hub for plant immunity and is targeted by Pseudomonas type III effectors. Plant Physiology 172: 19411958.10.1104/pp.16.00808CrossRefGoogle ScholarPubMed
van Berloo, R (2008) GGT 2.0: versatile software for visualization and analysis of genetic data. Journal of Heredity 99: 232236.10.1093/jhered/esm109CrossRefGoogle ScholarPubMed
Vardhan, H and Kousar, S (2015) Plant mitochondrial omics: state-of-the-art knowledge. In: Barh, D., Khan, M., Davies, E. (eds) PlantOmics: The Omics of Plant Science. India: Springer, pp. 573614.Google Scholar
Venkata, B, Bullet, U, Bansal, U, bullet, R, Singh, M, Robert, B, Park, R, Harbans, B and Bariana, H (2008) Genetic analyses of durable adult plant resistance to stripe rust and leaf rust in CIMMYT wheat genotype 11IBWSN50. International Journal of Plant Breeding 2: 6468.Google Scholar
Vierstra, RD (2009) The ubiquitin-26S proteasome system at the nexus of plant biology. Nature Reviews Molecular Cell Biology 10: 385397. doi: 10.1038/nrm2688.CrossRefGoogle ScholarPubMed
Visioni, A, Gyawali, S, Selvakumar, R, Gangwar, OP, Shekhawat, PS, Bhardwaj, SC, Al-Abdallat, AM, Kehel, Z and Verma, RPS (2018) Genome wide association mapping of seedling and adult plant resistance to barley stripe rust (Puccinia striiformis f. sp. hordei) in India. Frontiers in Plant Science 9: 113.10.3389/fpls.2018.00520CrossRefGoogle ScholarPubMed
Wang, Y and Bouwmeester, K (2017) L-type lectin receptor kinases: new forces in plant immunity. PLoS Pathogens 13: 17. doi: 10.1371/journal.ppat.1006433.CrossRefGoogle ScholarPubMed
Wang, J, Li, H, Zhang, L and Meng, L (2016) Integrated Software for Linkage Analysis and Genetic Mapping in Biparental Populations, Institute of Crop Science Chinese Academy of Agricultural Sciences (CAAS) Beijing 100081, China and Genetic Resources Program International Maize and Wheat Improvement Center (CIMMYT) Apdo. Postal 6-641, 06600 Mexico, D.F., Mexico, pp. 1274.Google Scholar
Yang, L, Zhang, X, Zhang, X, Wang, J, Luo, M, Yang, M, Wang, H, Xiang, L, Zeng, F, Yu, D, Fu, D and Rosewarne, GM (2017) Identification and evaluation of resistance to powdery mildew and yellow rust in a wheat mapping population. PLoS ONE 12: 118. doi: 10.1371/journal.pone.0177905.Google Scholar
Yao, C, Wu, Y, Nie, H and Tang, D (2012) RPN1a, a 26S proteasome subunit, is required for innate immunity in Arabidopsis. Plant Journal 71: 10151028. doi: 10.1111/j.1365-313X.2012.05048.x.CrossRefGoogle ScholarPubMed
Zhang, W, Zhang, M, Zhu, X, Cao, Y, Sun, Q, Ma, G, Chao, S, Yan, C, Xu, SS and Cai, X (2018) Molecular cytogenetic and genomic analyses reveal new insights into the origin of the wheat B genome. Theoretical and Applied Genetics 131: 365375.10.1007/s00122-017-3007-0CrossRefGoogle ScholarPubMed
Zhang, H, Mao, R, Wang, Y, Zhang, L, Wang, C, Lv, S, Liu, X, Wang, Y and Ji, W (2019) Transcriptome-wide alternative splicing modulation during plant-pathogen interactions in wheat. Plant Science 288: 110160.10.1016/j.plantsci.2019.05.023CrossRefGoogle ScholarPubMed
Zhou, H, Li, S, Deng, Z, Wang, X, Chen, T, Zhang, J, Chen, S, Ling, H, Zhang, A, Wang, D and Zhang, X (2007) Molecular analysis of three new receptor-like kinase genes from hexaploid wheat and evidence for their participation in the wheat hypersensitive response to stripe rust fungus infection. Plant Journal 52: 420434.10.1111/j.1365-313X.2007.03246.xCrossRefGoogle ScholarPubMed
Supplementary material: File

Dhillon et al. supplementary material

Dhillon et al. supplementary material

Download Dhillon et al. supplementary material(File)
File 1.6 MB