Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-14T17:27:10.723Z Has data issue: false hasContentIssue false

Phylogeny, origin and diversification of the Dasylirion genus based on matK and rbcL sequences

Published online by Cambridge University Press:  11 October 2022

Yadhira C. Ortiz-Covarrubias
Affiliation:
Graduate Program in Genetic Resources for Arid Lands, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro #1923, Buenavista, Saltillo, Coahuila CP. 25315, Mexico
Martha Monzerrath Orozco-Sifuentes
Affiliation:
Graduate Program in Genetic Resources for Arid Lands, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro #1923, Buenavista, Saltillo, Coahuila CP. 25315, Mexico
Dulce V. Mendoza-Rodríguez
Affiliation:
Graduate Program in Genetic Resources for Arid Lands, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro #1923, Buenavista, Saltillo, Coahuila CP. 25315, Mexico
José A. Villlarreal-Quintanilla
Affiliation:
Graduate Program in Genetic Resources for Arid Lands, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro #1923, Buenavista, Saltillo, Coahuila CP. 25315, Mexico
Octavio Martínez
Affiliation:
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Unidad de Genómica Avanzada (Langebio), Irapuato, Guanajuato 36824, Mexico
Fernando Hernández-Godínez
Affiliation:
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Unidad de Genómica Avanzada (Langebio), Irapuato, Guanajuato 36824, Mexico
María de Jesús Jáuregui-González
Affiliation:
Instituto Tecnológico Superior de Nochistlán, Instituto Tecnológico Nacional de Mexico, Carr. Los Sandovales Km. 2.8, Nochistlán, Zacatecas C.P. 99900, Mexico
M. Humberto Reyes-Valdés*
Affiliation:
Graduate Program in Genetic Resources for Arid Lands, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro #1923, Buenavista, Saltillo, Coahuila CP. 25315, Mexico
*
Author for correspondence: M. Humberto Reyes-Valdés, E-mail: [email protected]

Abstract

The Dasylirion genus is highly represented in the arid and semi-arid regions of Mexico and USA, playing important ecological and economical roles. Inferring the evolutionary patterns of this group will eventually facilitate understanding biological phenomena and outlining conservation and usage strategies. We performed a molecular phylogenetic analysis based on two chloroplast DNA regions: maturase-K gene (matK) and the large subunit of ribulose-1,5-bisphosphate carboxylase gene (rbcL). We constructed a phylogenetic tree by maximum likelihood with GTR as the sequence substitution model and a relaxed clock, inferred diversification patterns by lineage through time and explored the diversification rates of Dasylirion by the Yule model. The study included 11 species of the genus, which represent 50% of all its known species. We used two calibration points to date the tree, one based on fossil records of Acorus gramineus, and the other on the estimated stem age of the Yucca genus. The combined sequences of the two partial genes comprised 1455 bp and 18 polymorphic sites. We estimated an average substitution rate of 0.0005 nucleotide per million years for the concatenated DNA sequences. The molecular dating analysis estimated that the Dasylirion genus appeared more than 5.46 million years ago, with a rate of diversification of 0.0466 net speciation events per million years. The estimated age represents a lower bound, since not all Dasylirion species are included. These findings are consistent with other origin and diversification hypotheses for arid-land Asparagaceae in the Mexican highlands as a result of geomorphological events in North America.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of NIAB

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aronne, G and Wilcock, C (1996) The adaptive advantage of dioecy in shrubs of the Mediterranean region. Giornale Botanico Italiano 130, 9599.CrossRefGoogle Scholar
Bawa, KS (1980) Evolution of dioecy in flowering plants. Annual Review of Ecology, Evolution, and Systematics 11, 1539.CrossRefGoogle Scholar
Bogler, DJ (1995) Systematics of Dasylirion: taxonomy and molecular phylogeny. Boletín de la Sociedad Botánica de México 56, 6976.Google Scholar
Bremer, K (2000) Early Cretaceous lineages of monocot flowering plants. Proceedings of the National Academy of Sciences of the United States of America 97, 47074711.CrossRefGoogle ScholarPubMed
Chen, S, Kim, DK, Chase, MW and Kim, JH (2013) Networks in a large-scale phylogenetic analysis: reconstructing evolutionary history of Asparagales (Lilianae) based on four plastid genes. Public Library of Science 8, 118.Google Scholar
Chenna, R, Sugawara, H, Koike, T, Lopez, R, Gibson, TJ, Higgins, DG and Thompson, JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Research 31, 34973500.CrossRefGoogle ScholarPubMed
Chetia, P, Phukan, BC and Tamang, D (2016) rbcl gene based molecular phylogenetic studies of certain pteridophytes of Assam. Research & Reviews: A Journal of Bioinformatics 3, 1821.Google Scholar
Cruz-Requena, M, De La Garza-Toledo, H, Aguilar, CN, Aguilera-Carbo, A, Reyes-Valdés, H, Rutiaga, M and Rodríguez-Herrera, R (2013) Chemical and molecular properties of sotol plants (Dasylirion cedrosanum) of different sex and its fermentation products. Basic and Applied Chemical Sciences 3, 4149.Google Scholar
Felsenstein, J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17, 368376.CrossRefGoogle ScholarPubMed
Felsenstein, J (1985) Confidence limits on phylogenies. An approach using the bootstrap. Evolution 39, 783791.CrossRefGoogle ScholarPubMed
Flores-Abreu, IN, Trejo-Salazar, RE, Sánchez-Reyes, LL, Good, SV, Magallón, S, García-Mendoza, A and Eguiarte, LE (2019) Tempo and mode in coevolution of Agave sensu lato (Agavoideae, Asparagaceae) and its bat pollinators, Glossophaginae (Phyllostomidae). Molecular Phylogenetics and Evolution 133, 176188.CrossRefGoogle ScholarPubMed
Good-Ávila, SV, Souza, V, Gaut, BS and Eguiarte, LE (2006) Timing and rate of speciation in Agave (Agavaceae). Proceedings of the National Academy of Sciences of the United States of America 103, 91249129.CrossRefGoogle ScholarPubMed
Henry, IM, Akagi, T, Tao, R and Comai, L (2018) One hundred ways to invent the sexes: theoretical and observed paths to dioecy in plants. Annual Review of Plant Biology 69, 553575.CrossRefGoogle ScholarPubMed
Hernández-Quintero, JD, Reyes-Valdés, MH, Mendoza-Rodríguez, DV, Gómez-Martínez, M and Rodríguez-Herrera, R (2015) Estudio de los cromosomas mitóticos y meióticos del sotol (Dasylirion cedrosanum Trel.). International Journal of Experimental Botany 84, 107112.Google Scholar
Ho, SYW and Duchêne, S (2014) Molecular-clock methods for estimating evolutionary rates and timescales. Molecular Ecology 23, 59475965.CrossRefGoogle ScholarPubMed
Hufford, L, Moody, ML and Soltis, DE (2001) A phylogenetic analysis of Hydrangeaceae based on sequences of the plastid gene matK and their combination with rbcl and morphological data. International Journal of Plant Sciences 162, 835846.CrossRefGoogle Scholar
IMPI (2002) General Declaration of Protection and Denomination of Origin ‘Sotol’. Mexico: Mexican Federal Government. Available at https://www.gob.mx/cms/uploads/attachment/file/494502/DO.Sotol.08.08.2002.pdf.Google Scholar
Jiménez-Barron, O, García-Sandoval, R, Magallón, S, García-Mendoza, A, Nieto-Sotelo, J, Aguirre-Planter, E and Eguiarte, LE (2020) Phylogeny, diversification rate, and divergence time of Agave sensu lato (Asparagaceae), a group of recent origin in the process of diversification. Frontiers in Plant Science 11, 117.CrossRefGoogle ScholarPubMed
Kress, WJ and Erickson, DL (2007) A two-locus global DNA barcode for land plants: the coding rbcl gene complements the non-coding trnH-psbA spacer region. Public Library of Science 2, e508.Google ScholarPubMed
Leach, JD and Sobolik, KD (2010) High dietary intake of prebiotic inulin-type fructans in the prehistoric Chihuahuan Desert. British Journal of Nutrition 103, 15581561.CrossRefGoogle ScholarPubMed
Levin, RA, Wagner, WL, Hoch, PC, Zimmer, EA, Nepokroeff, M, Chris Pires, J and Sytsma, KJ (2003) Family-level relationships of Onagraceae based on chloroplast rbcl and ndhF data. American Journal of Botany 90, 107115.CrossRefGoogle ScholarPubMed
Liu, Z, Ci, XQ, Li, L, Li, HW, Conran, JG and Li, J (2017) DNA barcoding evaluation and implications for phylogenetic relationships in Lauraceae from China. Public Library of Science 12, 120.Google ScholarPubMed
Lopes, MA, Takasaki, K, Bostwick, DE, Helentjaris, T and Larkins, BA (1995) Identification of two opaque2 modifier loci in Quality Protein Maize. Molecular and General Genetics 247, 603613.CrossRefGoogle ScholarPubMed
López-Barbosa, LA (2005) El sotol en Coahuila, potencialidades y limitaciones. In Contreras-Delgado, C and Orega-Ridaura, I (eds), Bebidas y regiones, historia e impacto de la cultura etílica en México. Mexico: Plaza y Valdés S.A., pp. 6384.Google Scholar
Mastretta-Yanes, A, Moreno-Letelier, A, Piñero, D, Jorgensen, TH and Emerson, BC (2015) Biodiversity in the Mexican highlands and the interaction of geology, geography and climate within the Trans-Mexican Volcanic Belt. Journal of Biogeography 42, 15861600.CrossRefGoogle Scholar
Orozco-Sifuentes, MM, Mendoza-Rodríguez, DV, Hernández-Godinez, F, Martínez, O, Villarreal-Quintanilla, JA and Reyes-Valdés, MH (2019) New matK primers for life barcode in species of the genus Dasylirion. Revista Mexicana de Ciencias Agrícolas 10, 13131324.CrossRefGoogle Scholar
Paradis, E (2005) Statistical analysis of diversification with species traits. Evolution 59, 112.Google Scholar
Paradis, E (2012) Analysis of Phylogenetics and Evolution with R. New York: Springer, 386 p.CrossRefGoogle Scholar
Poinar, HN, Kuch, M, Sobolik, KD, Barnes, I, Stankiewicz, AB, Kuder, T and Pääbo, S (2001) A molecular analysis of dietary diversity for three archaic Native Americans. Proceedings of the National Academy of Sciences 98, 43174322.CrossRefGoogle ScholarPubMed
Pybus, OG and Harvey, PH (2000) Testing macro-evolutionary models using incomplete molecular phylogenies. Proceedings of the Royal Society of London, Series B: Biological Sciences 26, 22672272.Google Scholar
R Core Team (2021) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available at https://www.R-project.org/.Google Scholar
Renner, SS (2014) The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. American Journal of Botany 101, 15881596.Google Scholar
Revell, LJ (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3, 217223.CrossRefGoogle Scholar
Reyes-Valdés, MH, Hernández-Quintero, JD, Morales-Reyes, YA, Mendoza-Rodríguez, DV, González-Uribe, DU, Ramírez-Godina, F and Villarreal-Quintanilla, JA (2017) Sex ratio and spatial distribution of pistillate and staminate plants of Dasylirion cedrosanum. International Journal of Experimental Botany 86, 171180.Google Scholar
Reyes-Valdés, MH, Palacios, R, Rivas-Martínez, EN, Robledo-Olivo, A, Antonio-Bautista, A, Valdés-Dávila, CM, Villarreal-Quintanilla, and Benavides-Mendoza, A (2019) The sustainability of Mexican traditional beverage sotol: ecological, historical, and technical issues. In Grumezescu, AM and Holban, AM (eds), Processing and Sustainability of Beverages. Cambridge, MA: Woodhead Publishing, pp. 103137.CrossRefGoogle Scholar
Rojas-Piña, V, Olson, ME, Alvarado-Cárdenas, LO and Eguiarte, LE (2014) Molecular phylogenetics and morphology of Beaucarnea (Ruscaceae) as distinct from Nolina, and the submersion of Calibanus into Beaucarnea. Taxon 63, 11931211.CrossRefGoogle Scholar
Sanderson, MJ (2002) Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Molecular Biology and Evolution 19, 101109.CrossRefGoogle ScholarPubMed
Scheinvar, E, Gámez, N, Castellanos-Morales, G, Aguirre-Planter, E and Eguiarte, LE (2017) Neogene and Pleistocene history of Agave lechuguilla in the Chihuahuan Desert. Journal of Biogeography 44, 322334.CrossRefGoogle Scholar
Schliep, KP (2011) Phangorn: phylogenetic analysis in R. Bioinformatics (Oxford, England) 27, 592593.Google ScholarPubMed
Selvaraj, D, Kumar-Sarma, R and Sathishkumar, R (2008) Phylogenetic analysis of chloroplast matk gene from Zingiberaceae for plant DNA barcoding. Bioinformation 3, 2427.CrossRefGoogle ScholarPubMed
Tamura, MN, Yamashita, J and Fuse, S (2004) Molecular phylogeny of monocotyledons inferred from combined analysis of plastid matk and rbcl gene sequences. Journal of Plant Research 117, 109120.Google ScholarPubMed
Tank, DC, Eastman, JM, Pennell, MW, Soltis, PS, Soltis, DE, Hinchliff, CE and Harmon, LJ (2015) Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. New Phytologist 207, 454467.CrossRefGoogle ScholarPubMed
Tidwell, WD and Parker, LR (1990) Protoyucca shadishii gen. et sp. nov., an arborescent monocotyledon with secondary growth from the Middle Miocene of Northwestern Nevada, U.S.A. Review of Palaeobotany and Palynology 62, 7995.CrossRefGoogle Scholar
Wertheim, JO and Sanderson, MJ (2011) Estimating diversification rates: how useful are divergence times? Evolution: International Journal of Organic Evolution 65, 309320.CrossRefGoogle ScholarPubMed
Supplementary material: File

Ortiz-Covarrubias et al. supplementary material

Table S1

Download Ortiz-Covarrubias et al. supplementary material(File)
File 18.2 KB