Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T06:43:46.891Z Has data issue: false hasContentIssue false

A new set of microsatellite loci for Cattleya walkeriana Gardner, an endangered tropical orchid species and its transferability to Cattleya loddigesii Lindl. and Cattleya nobilior Reichenbach

Published online by Cambridge University Press:  20 July 2017

Bruno C. Rossini
Affiliation:
Instituto de Biotecnologia (IBTEC), UNESP – Universidade Estadual Paulista, 18607-440 Botucatu, SP, Brazil Departamento de Genética, UNESP – Universidade Estadual Paulista, 18618-689 Botucatu, SP, Brazil
Mariá B. Kampa
Affiliation:
Universidade Estadual do Centro-Oeste (UNICENTRO), PR 153, Km 7, Irati, PR 84500-000, Brazil
Celso L. Marino
Affiliation:
Instituto de Biotecnologia (IBTEC), UNESP – Universidade Estadual Paulista, 18607-440 Botucatu, SP, Brazil Departamento de Genética, UNESP – Universidade Estadual Paulista, 18618-689 Botucatu, SP, Brazil
Fernanda Bortolanza Pereira
Affiliation:
Programa de Pós-Graduação em Ciência Florestal (FCA/UNESP) – Rua José Barbosa de Barros, 1780, Portaria II: Rodovia Alcides Soares, Km 3, 18610-307, Botucatu, SP, Brazil
Fábio M. Alves
Affiliation:
Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, CP 6109, Campinas, SP, CEP 13083-862, Brazil
Anete Pereira de Souza
Affiliation:
Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, CP 6109, Campinas, SP, CEP 13083-862, Brazil
Bruna Ibanes
Affiliation:
Escola Superior de Agricultura ‘Luiz de Queiroz’, Universidade de São Paulo’, Av. Pádua Dias, 11, PO Box 9, Piracicaba, SP 13418-900, Brazil
Kaiser Dias Schwarcz
Affiliation:
Agência Paulista de Tecnologia dos Agronegócios, Pólo Regional Centro Sul, Rodovia SP127, Km 30, CP 28, Piracicaba, SP 13400-970, Brazil
Maria Imaculada Zucchi
Affiliation:
Agência Paulista de Tecnologia dos Agronegócios, Pólo Regional Centro Sul, Rodovia SP127, Km 30, CP 28, Piracicaba, SP 13400-970, Brazil
Rogério Bobrowski
Affiliation:
Universidade Estadual do Centro-Oeste (UNICENTRO), PR 153, Km 7, Irati, PR 84500-000, Brazil
Fabiana S. B. Peres
Affiliation:
Universidade Estadual do Centro-Oeste (UNICENTRO), PR 153, Km 7, Irati, PR 84500-000, Brazil
Evandro Vagner Tambarussi*
Affiliation:
Universidade Estadual do Centro-Oeste (UNICENTRO), PR 153, Km 7, Irati, PR 84500-000, Brazil Programa de Pós-Graduação em Ciência Florestal (FCA/UNESP) – Rua José Barbosa de Barros, 1780, Portaria II: Rodovia Alcides Soares, Km 3, 18610-307, Botucatu, SP, Brazil
*
*Corresponding author. E-mail: [email protected]

Abstract

In this study, we isolate and analyse a new set of microsatellite loci for Cattleya walkeriana. Twenty-two primer pairs were screened for C. walkeriana (n = 32) and assessed for their transferability to Cattleya loddigesii (n = 12) and Cattleya nobilior (n = 06). All loci amplified for C. walkeriana; however, for C. loddigesii and C. nobilior, four and five primers, respectively, did not present amplification. The polymorphic loci presented between 2 and 13 alleles per locus for both C. walkeriana and C. loddigesii, with respective averages of 5.1 and 4.2. For C. nobilior, we found between two and five alleles per locus, with an average of 2.6. For C. walkeriana, observed heterozygosity varied from 0.100 to 0.966, whereas expected heterozygosity ranged from 0.097 to 0.900. The observed and expected heterozygosity for C. loddigesii and C. nobilior were also estimated. We found no significant linkage disequilibrium between any pair of loci, and evidence of null alleles at four loci (Cw16, Cw24, Cw30 and Cw31) for C. walkeriana. The combined power to exclude the first parent and combined non-exclusion probability of identity were 0.999 and 2.3 × 10−20, respectively. These new loci can be used in studies of germplasm resources, and assessments of genotypic and genetic diversity and population structure, thus improving the accuracy of such analyses and their applicability in the conservation and protection of these endangered species.

Type
Short Communication
Copyright
Copyright © NIAB 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amorim, EP, Silva, PH, Ferreira, CF, Amorim, VBO, Santos, VJ, Vilarinhos, AD, Santos, CMR, Souza Júnior, MR and Miller, RNG (2012) New microsatellite markers for bananas (Musa spp.). Genetic and Molecular Research 11: 10931098. doi: 10.4238/2012.April.27.8.CrossRefGoogle ScholarPubMed
Bajay, MM, Zucchi, MI, Kiihl, TAM, Batista, CEA, Monteiro, M and Pinheiro, JB (2011) Development of a novel set of microsatellite markers for castor bean, Ricinus communis (Euphorbiaceae). American Journal of Botany e87e89. doi: 10.3732/ajb.1000395.Google Scholar
Billotte, N, Lagoda, PJL, Risterucci, AM and Baurens, FC (1999) Microsatellite-enriched libraries: applied methodology for the development of SSR markers in tropical crops. Fruits 54: 277288.Google Scholar
Chybicki, IJ and Burczyk, J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. Journal of Heredity 100: 106113. doi: 10.1093/jhered/esn088.Google Scholar
de Vicente, MC, Guzmán, FA, Engels, J and Ramanatha Rao, V (2005) Genetic characterization and its use in decision making for the conservation of crop germplasm. In: The Role of Biotechnology, 5–7 March 2005, Villa Gualino, Turin, Italy, pp. 121128.Google Scholar
Doyle, JJ and Doyle, JL (1990) Isolation of plant DNA fresh tissue. Focus 12: 1315.Google Scholar
Goudet, J (1995) FSTAT (version 2.9.3.2): a computer program to calculate F-statistics. Journal of Heredity 86: 485486. https://academic.oup.com/jhered/article-abstract/86/6/485/801357/FSTAT-Version-1-2-A-Computer-Program-to-Calculate?redirectedFrom=fulltext.Google Scholar
Govindaraj, M, Vetriventhan, M and Srinivasan, M (2015) Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genetic Research International 2015: Article ID 431487. doi: 10.1155/2015/431487.Google ScholarPubMed
Gupta, PK and Varshney, RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113: 163185. doi: 10.1023/A:1003910819967.CrossRefGoogle Scholar
Marshall, TC, Slate, J, Kruuk, LEB and Pemberton, JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology 7: 639655.CrossRefGoogle ScholarPubMed
Oliveira, EJ, Pádua, JG, Zucchi, MI, Vencovsky, R and Vieira, MLC (2006) Origin, evolution and genome distribution of microsatellites. Genetic and Molecular Biology 29: 294307. doi: 10.1590/S1415-47572006000200018.Google Scholar
Schuelke, M (2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology 18: 233234. doi: 10.1038/72708.Google Scholar
Tambarussi, EV, Menezes, LC, Ibañes, B, Antiqueira, LMOR, Dequigiovanni, G, Moreno, MA, Ferraz, EM, Zucchi, MI, Veasey, WA and Vencovsky, R (2016) Microsatellite markers for Cattleya walkeriana Gardner, an endangered tropical orchid species. Plant Genetic Resources 15: 9396. doi: 10.1017/S1479262115000635.Google Scholar
Tambarussi, EV, Veasey, EA, Menezes, L, Ibañes, B, Lombardi, KC and Vencovsky, R (2017) Genetic diversity between native and improved Cattleya walkeriana Gardner famous clones. Acta Scientiarum. Agronomy 39: 315320. doi: 10.4025/actasciagron.v39i3.32520.Google Scholar
van Oosterhout, C, Weetman, D and Hutchinson, WF (2006) Estimation and adjustment of microsatellite null alleles in nonequilibrium populations. Molecular Ecology Notes 4, 535538. doi: 10.1111/j.1471–8286.2004.00684.x.Google Scholar
Vieira, MLC, Santini, L, Diniz, AL and Munhoz, CF (2016) Microsatellite markers; what mean and why they are so useful. Genetic and Molecular Biology 39: 312328. doi: 10.1590/1678-4685-GMB-2016-0027.Google Scholar
Supplementary material: File

Rossini supplementary material

Table S1

Download Rossini supplementary material(File)
File 58.4 KB
Supplementary material: File

Rossini supplementary material

Table S2

Download Rossini supplementary material(File)
File 84 KB