Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T21:54:42.492Z Has data issue: false hasContentIssue false

Morphological and molecular diversity and genetic structure of Moroccan cultivated almond (Prunus dulcis Mill.) beside some foreign varieties

Published online by Cambridge University Press:  27 February 2014

Abdelali El Hamzaoui
Affiliation:
Plant Breeding and Genetic Resources Unit, INRA, Regional Agricultural Research Centre of Meknes, Haj Kaddour Road, Box 578, Meknes, Morocco Department of Biology, Faculty of Science, Moulay Ismaïl University, BP 11 201, Zitoune, Meknes50000, Morocco
Ahmed Oukabli*
Affiliation:
Plant Breeding and Genetic Resources Unit, INRA, Regional Agricultural Research Centre of Meknes, Haj Kaddour Road, Box 578, Meknes, Morocco
Mohiéddine Moumni
Affiliation:
Department of Biology, Faculty of Science, Moulay Ismaïl University, BP 11 201, Zitoune, Meknes50000, Morocco
*
* Corresponding author. E-mail: [email protected]

Abstract

In this study, 15 morphological traits and 16 microsatellite markers were used to assess the morphological variability and structure of 68 (33 local and 35 foreign) almond accessions (Prunus dulcis (Mill.) D.A. Webb). Extensive phenotypic diversity was found among the accessions, and results indicated a high variation in leaf and fruit traits. Varieties were separated into two distinct groups with a similarity coefficient of 0.761. Morphological traits were categorized by principal component analysis into five components, which explained 86.5% of the total variation. Nut and kernel traits were dominant in the two first components, accounting for 49.4% of the variation. By contrast, leaf traits accounted for 18.4% of the variation in the third component. The results of molecular analysis (Bayesian clustering approach) did not correspond to morphological groupings, and the second approach was more discriminate. The combination of both approaches revealed the richness among the collected plant materials, which will be useful in breeding programmes of this species.

Type
Research Article
Copyright
Copyright © NIAB 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, JA, Churchill, GA, Sutrique, JE, Tanksley, SD and Sorrels, ME (1993) Optimizing parental election for genetic linkage maps. Genome 36: 181186. doi:10.1139/g93-024.Google Scholar
Aranzana, MJ, García-Mas, J, Carbó, J and Arús, P (2002) Development and variability analysis of microsatellite markers in peach. Plant Breeding 121: 8792.Google Scholar
Barbeau, G and El Bouami, A (1979) Prospection de tardivité de floraison chez I'amandier dans le sud Marocain. Fruits 34: 131137.Google Scholar
Botstein, D, White, RL, Skolnick, M and Davis, RW (1980) Construction of genetic linkage map in man using restriction fragment length polymorphisms. The American Journal of Human Genetics 32: 314331.Google Scholar
Cipriani, G, Lot, G, Huang, HG, Marrazzo, MT, Peterlunger, E and Testolin, R (1999) AC/GT and AG/CT microsatellite repeats in peach (Prunus persica (L.) Batsch): isolation, characterization and cross-species amplification in Prunus . Theoretical and Applied Genetics 99: 6572.Google Scholar
Čolić, S, Rakonjac, V, Zec, G, Nikolić, D and Akšić, MF (2012) Morphological and biochemical evaluation of selected almond [Prunus dulcis (Mill.) D.A. Webb] genotypes in northern Serbia. Turkish Journal of Agriculture and Forestry 36: 429438.Google Scholar
Dirlewanger, E, Crosson, A, Tavaud, P, Aranzana, MJ, Poizat, C, Zanetto, A, Arús, P and Laigret, L (2002) Development of microsatellite markers in peach and their use in genetic diversity analysis in peach and sweet cherry. Theoretical and Applied Genetics 105: 127138.Google Scholar
Doyle, JJ and Doyle, JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 1115.Google Scholar
El Hamzaoui, A, Oukabli, A, Charafi, J and Moumni, M (2012) Assessment of genetic diversity of Moroccan cultivated almond (Prunus dulcis Mill.D. A. Webb) in its area of extreme diffusion, using nuclear microsatellites. American Journal of Plant Science: 12941303.Google Scholar
El Hamzaoui, A, Oukabli, A, Charafi, J and Moumni, M (2013) Moroccan almond is a distinct gene pool as revealed by SSR. Scientia Horticulturae 154: 3744.Google Scholar
Evanno, G, Regnaut, S and Goudet, J (2005) Detecting the number of clusters of individuals using the software Structure: a simulation study. Molecular Ecology 14: 26112620.Google Scholar
Fernández i Martí, A, Alonso, JM, Espiau, MT, Rubio-Cabetas, MJ and Socias i Company, R (2009) Genetic diversity in Spanish and foreign almond germplasm assessed by molecular characterization with simple sequence repeats. Journal of the American Society for Horticultural Science 134: 535542.Google Scholar
Gower, JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27: 857874.Google Scholar
Gradziel, TM, Martinez-Gómez, P, Dicenta, F and Kester, DE (2001) The utilization of Prunus species for almond variety improvement. Journal of the American Pomological Society 55: 100108.Google Scholar
Grasselly, CH (1972) L'amandier; caractères morphologiques et physiologiques des variétés, modalité de leurs transmissions chez les hybrides de première génération. Thèse, Université de Bordeaux I..Google Scholar
Gülcan, R (1985) Descriptor List for Almond (Prunus amygdalus) . Rome: International Board for Plant Genetic Resources.Google Scholar
Gupta, PK, Balyan, HS, Sharma, PC and Ramesh, B (1996) Microsatellites in plants: a new class of molecular markers. Current Science 70: 4554.Google Scholar
Hubisz, MJ, Falush, D, Stephens, M and Pritchard, JK (2009) Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources 9: 13221332.Google Scholar
Kadkhodaei, S, Shahnazari, M, Khayyam Nekouei, M, Ghasemi, M, Etminani, H, Imani, A and Ariff, AB (2011) A comparative study of morphological and molecular diversity analysis among cultivated almonds (Prunus dulcis). Australian Journal of Crop Science 5: 8291.Google Scholar
Kodad, O, Oukabli, A, Mamouni, A, Socias i Company, R, Estopañán, G and Juan, T (2011) Study of the genetic diversity of almond seedling populations in Morocco: application of a chemometric approach. Acta Horticulturae 912: 449454.Google Scholar
Kumar, LS (1999) DNA markers in plant improvement: an overview. Biotechnology Advances 17: 143182.Google Scholar
Laghezali, M (1985) L'amandier au Maroc. Options Méditerranéennes 85: 9196.Google Scholar
Lansari, A, Iezzoni, AF and Kester, DE (1994) Morphological variation within collections of Moroccan almond clones and Mediterranean and North American cultivars. Euphytica 78: 2741.CrossRefGoogle Scholar
Lansari, A, Azoulay, H and Kester, DE (1998) The morphological structure of almond seedling populations in Morocco. Acta Horticulturae 470: 95100.CrossRefGoogle Scholar
Mahhou, A and Dennis, FG (1992) The almond in Morocco. Hort Technology 2: 488492.Google Scholar
Martínez-Gómez, P, Arulsekar, S, Potter, D and Gradziel, TM (2003) An extended interspecific gene pool available to peach and almond breeding as characterized using simple sequence repeat (SSR) markers. Euphytica 131: 313322.Google Scholar
Martínez-Gómez, P, Sánchez-Pérez, R, Rubio, M, Dicenta, F, Gradziel, TM and Sozzi, GO (2005) Application of recent biotechnologies to Prunus tree crop genetic improvement. Ciencia E Invistigacion Agraria 32: 7396.Google Scholar
Martínez-Gómez, P, Sánchez-Pérez, R, Dicenta, F, Howad, WP, Arús, P and Gradziel, TM (2007) Almonds. In: Kole, CR (ed.) Genome Mapping and Molecular Breeding, vol. 4: Fruits and Nuts, pp. 229242.Google Scholar
MVSP 3.1. Kovach Computing Services. 85 Nant-y-Felin Pentraeth, Isle of Anglesey LL75 8UY. Wales, U.K..Google Scholar
Nikoumanesh, K, Ebadi, A, Zeinalabedini, M and Gogorcen, Y (2011) Morphological and molecular variability in some Iranian almond genotypes and related Prunus species and their potentials for rootstock breeding. Scientia Horticulturae 129: 108118.Google Scholar
Oukabli, A (2011) Almond breeding in Morocco: a chronological perspective. FAO-CIEHAM-Nucis-Newsletter, Number 15, December 2011..Google Scholar
Oukabli, A, Mamouni, A, Laghezali, M, Oufquir, M, Quennou, M, Amahrach, M, Lahlou, M, Allabou, M, Mekkaoui, A and Ibrahimi Abdelwafi, A (2006) Evaluation de 102 variétés d'amandier en culture pluviale sous climat semi-aride. Alawamia 118: 221.Google Scholar
Oukabli A, Mamouni A and Mekkaoui A (2006, 2007) Rapports des prospections «amandiers» effectuées dans les régions de Marrakech-Azilal et au Sud marocain. Documents internes INRA. pp. 10.Google Scholar
Oukabli A, Ibnou Ali Elalaoui M and Mamouni A (2013) La culture d'amandier en zones de montagnes (Aknoul et Azilal): de la conduite ancestrale à l'adaptation au contexte climatique et du marché. Revue annuelle des activités de la recherche du projet MCC (Millennium challenge corporation). Axe II: Variétés et leurs conduites techniques. pp. 1-16.Google Scholar
Pritchard, JK, Stephens, M and Donnelly, P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945959.Google Scholar
Socias i Company R, (1990) Breeding self-compatible almonds. In: Janick, J (ed.) Plant Breeding Reviews. vol. 8. Hoboken, NJ: John Wiley & Sons, pp. 313338.Google Scholar
Sorkheh, K, Shiran, B, Gradzeil, TM, Epperson, P, Martinez-Gómez, P and Asadi, E (2007) Amplified fragment length polymorphism as a tool for molecular characterization of almond germplasm: genetic diversity among genotypes and related wild species of almond, and its relationships with agronomic traits. Euphytica 156: 327344.CrossRefGoogle Scholar
Sorkheh, K, Shiran, B, Rouhi, V, Asadi, E, Jahanbazi, H, Moradi, H, Gradziel, TM and Martínez-Gómez, P (2009) Phenotypic diversity within native Iranian almond (Prunus spp.) species and their breeding potential. Genetic Resources and Crop Evolution 56: 947961.Google Scholar
Sosinski, B, Gannavarapu, M, Hager, LD, Beck, LE, King, GJ, Ryder, CD, Rajapakse, S, Baird, WV, Ballard, RE and Abbott, AG (2000) Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theoretical and Applied Genetics 101: 421428.Google Scholar
SPSS(2008) SPSS Release 17.0.1. Chicago, IL: SPSS, Inc.Google Scholar
Talhouk, SN, Lubani, RT, Baalbaki, R, Zurayk, R, AlKhatib, A, Parmaksizian, L and Jaradat, AA (2000) Phenotypic diversity and morphological characterization of Amygdalus L. species in Lebanon. Genetic Resources and Crop Evolution 47: 93104.Google Scholar
Testolin, R, Marrazzo, T, Cipriani, G, Quarta, R, Verde, I, Dettori, T, Pancaldi, M and Sansavini, S (2000) Microsatellite DNA in peach (Prunus persica (L.) Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43: 512520.Google Scholar
Williams, JGk, Kubelik, AE, Livak, KJ, Rafaiski, JA and Tingey, SC (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18: 65316536.Google Scholar
Wünsch, A (2009) Cross-transferable polymorphic SSR loci in Prunus species. Scientia Horticulturae 120: 348352.Google Scholar
Xie, H, Sui, Y, Chang, FQ, Xu, Y and Ma, RC (2006) SSR allelic variation in almond (Prunus dulcis Mill.). Theoretical and Applied Genetics 112: 366372.Google Scholar
Yeh, FC, Yang, R, Boyle, TJ, Ye, Z and Xiyan, JM (2000) PopGene32, Microsoft Windows-based Freeware for Population Genetic Analysis, Version 1.32. Edmonton, AB: Molecular Biology and Biotechnology Centre, University of Alberta.Google Scholar
Zeinalabedini, M, Sohrabi, S, Nikoumanesh, K, Imani, A and Mardi, M (2012) Phenotypic and molecular variability and genetic structure of Iranian almond cultivars. Plant Systematics and Evolution 298: 19171929.CrossRefGoogle Scholar
Supplementary material: File

El Hamzaoui Supplementary Material

Tables

Download El Hamzaoui Supplementary Material(File)
File 68.8 KB