Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T22:26:21.787Z Has data issue: false hasContentIssue false

Morphological and ecogeographical diversity analysis of maize germplasm in the high altitude Andes region of Ecuador

Published online by Cambridge University Press:  07 June 2021

César Tapia*
Affiliation:
Instituto Nacional de Investigaciones Agropecuarias – INIAP, Quito, Ecuador
Elena Torres
Affiliation:
Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
Nelly Paredes
Affiliation:
Instituto Nacional de Investigaciones Agropecurias – INIAP, Orellana, Ecuador
Mauricio Parra-Quijano
Affiliation:
Facultad de Ciencias Agrarias, Universidad Nacional de Colombia sede Bogotá, Bogotá, Colombia
*
*Corresponding author. E-mail: [email protected]

Abstract

The Andean region of Ecuador is the place of origin of many maize landraces grouped into 24 races. Definition of priorities for maize diversity conservation in this region can be supported by the spatial identification of areas with a high eco-geographical and phenotypic diversity. Six hundred thirty-six maize samples were morphologically characterized using 14 descriptors and assigned to a distinctive race. Additionally, sampled farms were characterized by 12 environmental variables. From these data, maps of morphological and eco-geographical diversity were obtained by using techniques to determine eco-geographical and phenotypic distances and applying them to each geographical neighbourhood. The races Patillo Ecuatoriano, Racimo de Uva and Uchima exhibited high intra-racial morphological variation, particularly in the shape of the ear, kernel row layout, cob diameter and total kernel number. The highest number of different races was observed in Imbabura, Azuay and Chimborazo provinces. The highest levels of morphological diversity were found in three cells (10 × 10 km), located in Pichincha, Chimborazo and Loja provinces. Two ecological niches, located in Loja province, showed high levels of eco-geographical diversity. A comparison between diversity maps revealed shared hotspots of morphological and eco-geographical diversity in the central and southwest areas of Imbabura province. The Andean highlands of Ecuador are an optimal refuge for the conservation of maize diversity, and the criteria of eco-geographical and morphological diversity and race richness should be considered when defining priority in situ conservation areas.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of NIAB

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abu-Alrub, I, Christiansen, J, Madsen, S, Sevilla, R and Ortiz, R (2004) Assessing tassel, kernel and ear variation in Peruvian highland maize. Plant Genetic Resources Newsletter 137: 3441.Google Scholar
Ayala, J, Quiróz, E and Saravia, P (2019) Los maíces nativos en México: alternativas de valor y desarrollo de oportunidades en el sector agropecuario. México: Editorial Alyeri, IICA, 184 p.Google Scholar
Bracco, M, Lia, V, Gottlieb, A, Cámara Hernández, J and Poggio, L (2009) Genetic diversity in maize landraces from indigenous settlements of Northeastern Argentina. Genética 135: 3949.CrossRefGoogle ScholarPubMed
Carrera, J (2013) Los colores del maíz: agrobiodiversidad campesina del maíz en el Ecuador. In: Cantero, P (ed.) Zara Llacta. Quito: Ministerio de Cultura y Patrimonio del Ecuador, pp. 5075.Google Scholar
Cevallos, R (2013) Maíz, danza y rebelión: Inti Raymi en Cotacachi. Saarbrücken: Editorial Académica Española, 185 p.Google Scholar
CIMMYT [Internet]. [cited 2018 Jan]. Banco de germoplasma. Available from: https://repository.cimmyt.org/handle/10883/20047.Google Scholar
Coba, CA (1989) Comentarios a una fiesta que ha muerto: El Coraza. Sarance 13: 99104.Google Scholar
de la Torre, L and Balslev, H (2008) La diversidad cultural del Ecuador. In: de la Torre, L, Balslev, H, Navarrete, H, Muriel, P and Macía, J (eds) Enciclopedia de las plantas útiles del Ecuador. Quito: Aarhus, pp. 3852.Google Scholar
Drucker, AG and Ramirez, M (2020) Payments for agrobiodiversity conservation services: an overview of Latin American experiences, lessons learned and upscaling challenges. Land Use Policy 99: 104810.CrossRefGoogle Scholar
Dyer, GA, López-Feldman, A, Yúnez-Naude, A and Taylor, JE (2014) Genetic erosion in maize's center of origin. Proceedings of the National Academy of Sciences 111: 1409414099.CrossRefGoogle ScholarPubMed
ESRI (2011) ArcGIS Desktop: Release 10. Redlands, CA; New York: Environmental Systems Research Institute.Google Scholar
Fernández, L, Crossa, J, Fundora-Mayor, Z and Gálvez, G (2009) Caracterización de razas cubanas de maíz (Zea mays L.) mediante marcadores agromorfológicos en la colección nacional del cultivo. Cultivos tropicales 30: 6270.Google Scholar
Fernández, L, Crossa, J, Fundora-Mayor, Z, Gálvez, G, Acuña, G and Guevara, C (2011) Presencia de la variabilidad ex situ e in situ en el germoplasma cubano de maíz (Zea mays L.). Importancia de la complementación de ambos enfoques de conservación. Cultivos Tropicales 32: 2134.Google Scholar
Fernández-Granda, L, Crossa, J, Fundora-Mayor, Z, Castiñeiras-Alfonso, L, Gálvez-Rodríguez, G, García-García, M and Giraudy-Bueno, C (2013) Identificación y caracterización de razas de maíz en sistemas campesinos tradicionales de dos áreas rurales de Cuba. Revista Cubana de Ciencias Biológicas 1: 317.Google Scholar
Gower, JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27: 857871.CrossRefGoogle Scholar
Grobman, A, Salhuana, W and Sevilla, R (1961) Races of Maize in Peru: Their Origins, Evolution and Classification. Publication 915. Washington: National Academy of Sciences – National Research Council, 384 p.Google Scholar
Hatheway, WH (1957) Races of Maize in Cuba. Publication 453. Washington: National Academy of Sciences - National Research Council, 82 p.Google Scholar
Holdridge, L (1978) Ecología basada en zonas de vida. San José: Instituto Interamericano de Cooperación para la Agricultura, 235 p.Google Scholar
INAMHI (2012) Anuario Meteorológico 2010. Quito: Instituto Nacional de Meteorología en Hidrología.Google Scholar
INEC (2012) Encuesta de superficie y producción agropecuaria continua ESPAC-2012. Quito: Instituto Nacional de Estadística y Censos.Google Scholar
INIAP [Internet]. [cited 2018 Jun]. Variedades mejoradas de maíz de Ecuador. Available from: https://repositorio.iniap.gob.ec/handle/41000/214.Google Scholar
Kiambi, DK, Newbury, HJ, Maxted, N and Ford-Lloyd, BV (2007) Molecular genetic variation in the African wild rice Oryza longistaminata A. Chev. et Roehr. and its association with environmental variables. African Journal of Biotechnology 7: 14461460.Google Scholar
Lema, GP (2005) Los Otavalos: Cultura y tradición milenaria. Quito: Ediciones Abya Yala, 202 p.Google Scholar
Lowe, AJ, Gillies, ACM, Wilson, J and Dawson, IK (2000) Conservation genetics of bush mango from central/West Africa: implications from random amplified polymorphic DNA analysis. Molecular Ecology 9: 831841.CrossRefGoogle ScholarPubMed
MAGAP (2019) Boletín situacional de Maíz Duro Seco – 2018, Coordinación general del Sistema de Información Nacional Quito: Ministerio de Agricultura y Ganadería.Google Scholar
Mejía, HA, Muriel, SB, Montoya, CA and Reyes, C (2013) In situ morphological characterization of Hylocereus spp. (fam.: Cactaceae) genotypes from Antioquia and Cordoba (Colombia). Revista Facultad Nacional de Agronomía Medellín 66: 68456854.Google Scholar
Montes-Hernández, LA, Hernández-Guzmán, JA, López-Sánchez, H, Santacruz-Varela, A, Vaquera-Huerta, H and Valdivia-Bernal, R (2014) Expresión fenotípica in situ de características agronómicas y morfológicas en poblaciones del maíz raza Jala. Revista Fitotecnia Mexicana 37: 363371.CrossRefGoogle Scholar
Navarro-Garza, H, Hernández-Flores, M, Castillo-González, F and Pérez-Olvera, A (2012) Diversidad y caracterización de maíces criollos. Estudio de caso en sistemas de cultivo en la costa chic de Guerrero, México. Agricultura, Sociedad y Desarrollo 9–2: 149165.Google Scholar
O'Brien, D (2009) Conserving crop diversity and a way of life in Ecuador. Agricultural Research 57: 1011.Google Scholar
Parra-Quijano, M, Iriondo, J, Frese, L and Torres, E (2012) Spatial and ecogeographic approaches for selecting genetic reserves in Europe. In: Maxted, N, Dulloo, M, Ford-Lloyd, B, Frese, L, Iriondo, J and Pinheiro de Carvalho, MAA (eds) Agrobiodiversity Conservation: Securing The Diversity of Crop Wild Relatives and Landraces. Wallingford: CABI, pp. 2028.CrossRefGoogle Scholar
Parra-Quijano, M, Torres, E, Iriondo, J and López, F (2016) Herramientas CAPFITOGEN. Tratado internacional sobre los recursos fitogenéticos para la alimentación y la agricultura. Rome: Food and Agriculture Organization of the United Nations, 139 p.Google Scholar
Perales, H and Golicher, D (2014) Mapping maize diversity in Mexico. PLoS ONE 9: e114657.CrossRefGoogle ScholarPubMed
Ramírez, E, Timothy, DH, Díaz, E and Grant, UJ (1961) Races of Maize in Bolivia. Publication 747. Washington: National Academy of Sciences – National Research Council, 167 p.Google Scholar
R Core Team (2017) R development core team. R a lang. Environmental Statistical Computation 55: 275286.Google Scholar
Roberts, LM, Grant, UJ, Ramírez, R, Hatheway, WH and Smith, DL (1957) Races of Maize in Colombia. Publication 510. Washington: National Academy of Sciences – National Research Council, 160 p.Google Scholar
Sánchez, JJ and Goodman, MM (1992) Relationships among the Mexican races of maize. Economic Botany 46: 7285.CrossRefGoogle Scholar
Scheldeman, X and van Zonneveld, M (2010) Training Manual on Spatial Analysis of Plant Diversity and Distribution. Rome: Bioversity International, 179 p.Google Scholar
Sevilla, R (1991) Diversidad de maíz en el área Andina. In: IICA, BID, PROCIANDINO (ed.). Experiencias en el cultivo del maíz en el área Andina. Quito: PROCIANDINO, pp. 123.Google Scholar
Sevilla, R (2006) Colecta y clasificación para programar la conservación in situ de la diversidad de maíz en la Amazonía peruana. In: Chávez-Servia, JL and Sevilla-Panizo, R (eds) Proceedings of the Seminar Fundamentos genéticos y socioeconómicos para analizar la agrodiversidad en la región de Ucayali. Cali: Biodiversity International, pp. 3352.Google Scholar
Tapia, CG and Carrera, H (2011) Promoción de los cultivos andinos para el desarrollo rural en Cotacachi-Ecuador. Quito, INIAP, UNORCAC, USDA, Bioversity International, 198 p.Google Scholar
Tapia, CG, Torres, ME and Parra-Quijano, M (2015) Searching for adaptation to abiotic stress: ecogeographical analysis of highland Ecuadorian maize. Crop Science 51: 113.Google Scholar
Tapia, CG, Nieto, C, Paredes, N, Nieto, M, Añazco, M, Hidrobo, G y Flor, E (2017) La biodiversidad para la agricultura y la alimentación en Ecuador: Estado actual y proyecciones de su uso sustentable y conservación (resumen del informe nacional). Quito: Instituto Nacional de Investigaciones Agropecuarias - Food and Agriculture Organization of the United Nations, 82 p.Google Scholar
Thomas, E, van Zonneveld, M, Loo, J, Hodgkin, T, Galluzzi, G and van Etten, J (2012) Present spatial diversity patterns of Theobroma cacao L. in the neotropics reflect genetic differentiation in pleistocene refugia followed by human-influenced dispersal. PLoS ONE 7: e47676.CrossRefGoogle ScholarPubMed
Timothy, DH, Hatheway, WH, Grant, UJ, Torregroza, M, Sarria, D and Varela, D (1963) Races of Maize in Ecuador. Publication 975. Washington: National Academy of Sciences – National Research Council, 155 p.Google Scholar
van Zonneveld, M, Scheldeman, X, Escribano, P, Viruel, MA, Van Damme, P, Garcia, W, et al. (2012) Mapping genetic diversity of cherimoya (Annona cherimola Mill.): application of spatial analysis for conservation and use of plant genetic resources. PLoS ONE 7: 114.CrossRefGoogle Scholar
Vargha, A and Deláney, H (1998) The Kruskal-Wallis test and stochastic homogeneity. Journal of Educational and Behavioral Statistics 23: 170192.CrossRefGoogle Scholar
Wilcox, AR (1973) Indices of qualitative variation and political measurement. Western Political Quarterly 26: 325343.CrossRefGoogle Scholar
Supplementary material: File

Tapia et al. supplementary material

Tables S1 and S2

Download Tapia et al. supplementary material(File)
File 14.9 KB