Published online by Cambridge University Press: 20 April 2011
Successful development of new sorghum cultivars and hybrids to ensure sustainable production depends largely on the availability of genetic resources with desirable traits such as pest resistance. Our recent research has focused on improvement of crop protection against greenbugs using the worldwide germplasm collection and genomics-based approaches. First, we conducted the systematic evaluation of a worldwide germplasm collection in order to identify new sources of greenbug resistance. Twenty-one resistant lines were identified, which offered new sources of resistance to sorghum breeding. Molecular markers used to assess the genetic diversity among those resistant lines suggested relatively diverse resistant sources in the sorghum germplasm collection. More recently, a mapping project was executed to associate the resistance genes with sorghum chromosomes. The mapping data indicated one major and a minor quantitative trait loci reside on chromosome 9 and are responsible for resistance to greenbug. In addition, cDNA microarrays were used to monitor greenbug-induced gene expression in sorghum plants. This study has developed a transcriptional profile for sorghum in response to greenbug attack, which provides us with useful molecular information for discovery of greenbug resistance genes and a better understanding of the genetic mechanisms controlling host defences in sorghum.