Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T19:37:51.690Z Has data issue: false hasContentIssue false

Diversity and conservation priorities of crop wild relatives in Mexico

Published online by Cambridge University Press:  26 January 2019

Aremi R. Contreras-Toledo*
Affiliation:
National Genetic Resources Center, National Forestry, Crops and Livestock Research Institute, Tepatitlán de Morelos, Jalisco 47600, Mexico School of Bioscience, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
Moisés Cortés-Cruz
Affiliation:
National Genetic Resources Center, National Forestry, Crops and Livestock Research Institute, Tepatitlán de Morelos, Jalisco 47600, Mexico
Denise E. Costich
Affiliation:
Maize and Wheat Germplasm Bank, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Estado de Mexico 56237, Mexico
Ma. de Lourdes Rico-Arce
Affiliation:
Royal Botanic Gardens Kew, Richmond, Surrey TW9 3AE, UK
Joana Magos Brehm
Affiliation:
School of Bioscience, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
Nigel Maxted
Affiliation:
School of Bioscience, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
*
*Corresponding author. E-mail: [email protected]

Abstract

Crop wild relatives (CWR) are valuable resources for crop breeding due to their close genetic relationship to the cultivated plants and their wide genetic variation, allowing the introgression of desirable traits into the crops, such as resistance to plant pests and diseases or adaptability to climate change. Mexico is a centre of agrobiodiversity, including CWR, but climate change, and other factors, are contributing to the loss of important Mexican CWR genetic diversity. The in situ and ex situ conservation status of Mexican priority CWR were assessed through a gap analysis as part of a national CWR conservation strategy for Mexico, to ensure the long-term preservation and improve the availability of these genetic resources. A set of 310 priority CWR taxa, previously identified as part of the national CWR inventory for Mexico, were analysed. Species distribution modelling and ecogeographic diversity analyses were used to detect gaps in in situ and ex situ conservation at taxon and ecogeographic levels. Priority target sites were identified throughout the country for complementary in situ and ex situ conservation of these taxa. The results obtained allow us to make recommendations for immediate conservation actions, thus helping to mitigate the threats to Mexican agrobiodiversity and enhance both national and global food security.

Type
Research Article
Copyright
Copyright © NIAB 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bellon, MR, Barrientos-Priego, AF, Colunga-García Marín, P, Perales, H, Reyes Agüero, JA, Rosales Serna, R and Zizumbo-Villarreal, D (2009) Diversidad y conservación de recursos genéticos en plantas cultivadas. In: CONABIO (ed.) Capital natural de México, vol. 2: Estado de conservación y tendencias de cambio. DF, Mexico: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, pp. 355382.Google Scholar
Brown, AHD and Briggs, JD (1991) Sampling strategies for genetic variation in ex situ collections of endangered plant species. In: Falk, DA and Holsinger, KE (eds) Genetics and Conservation of Rare Plants. New York: Oxford University Press, pp. 99119.Google Scholar
Brown, AHD and Marshall, DR (1995) A basic sampling strategy: theory and practice. In: Guarino, L, Ramantha Rao, V and Reid, R (eds) Collecting Plant Genetic Diversity: Technical Guidelines. Wallingford: CABI Publishing, pp. 7592.Google Scholar
Castañeda-Álvarez, NP, Vincent, HA, Kell, SP, Eastwood, RJ and Maxted, N (2011) Chapter 14: ecogeographic surveys. In: Guarino, L, Ramanatha Rao, V and Goldberg, E (eds) Collecting Plant Genetic Diversity: Technical Guidelines 2011 Update. Rome, Italy: Bioversity International, pp. 123. ISBN 978-92-9043-922-6. Available online at: http://cropgenebank.sgrp.cgiar.org/index.php?option=com_content&view=article&id=390&Itemid=557 (accessed 14 Aug 2017).Google Scholar
Castañeda-Álvarez, NP, de Haan, S, Juárez, H, Koury, CK, Achicanory, HA, Sosa, CC, Bernau, V, Salas, A, Heider, B, Simon, R, Maxted, N and Spooner, DM (2015) Ex situ conservation priorities for the wild relatives of potato (Solanum l. Section Petota). PLoS ONE 10: e01225599.Google Scholar
Castañeda-Álvarez, NP, Khoury, CK, Achicanoy, HA, Bernau, V, Dempewolf, H, Eastwood, RJ, Guarino, L, Harker, RH, Jarvis, A, Maxted, N, Müller, JV, Ramirez-Villegas, J, Sosa, CC, Struik, PC, Vincent, H and Toll, J (2016) Global conservation priorities for crop wild relatives. Nature Plants 2: 16022.Google Scholar
CONABIO (2011). Proyecto Global de Maíces Nativos (Global Project of Native Maize), National Commission for Knowledge and Use of Biodiversity. Available online at: http://www.biodiversidad.gob.mx/genes/proyectoMaices.html (accessed 15 July 2017).Google Scholar
CONABIO (2012) Estrategia Mexicana para la Conservación Vegetal 2012–2030. DF, Mexico: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Impresora Apolo.Google Scholar
CONABIO (2017) Portal de Geoinformación. Sistema Nacional de Información sobre Biodiversidad. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. México. Available online at: http://www.conabio.gob.mx/informacion/gis/ (accessed 12 Mar 2017).Google Scholar
CONABIO, CONANP, TNC and Pronatura (2007). Sitios prioritarios terrestres para la conservación de la biodiversidad. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Comisión Nacional de Áreas Naturales Protegidas, The Nature Conservancy, Programa México, Pronatura. Catálogo de metadatos geográficos. Available online at: http://www.conabio.gob.mx/informacion/gis/ (accessed 12 Mar 2017).Google Scholar
Contreras-Toledo, AR, Cortés-Cruz, MA, Costich, D, Rico-Arce, ML, Magos Brehm, J and Maxted, N (2018) A crop wild relative inventory for Mexico. Crop Science 58: 12921305.Google Scholar
Cutler, DR, Edwards, TC, Beard, KH, Cutler, A, Hess, KT, Gibson, JC and Lowler, JJ (2007) Random forest for classification in ecology. Ecology 88: 27832792.Google Scholar
Dulloo, ME, Ramanatha Rao, V, Engelmann, F and Engels, J (2005) Complementary conservation of coconuts. In: Batugal, P, Rao, VR and Oliver, J (eds) Coconut Genetic Resources. Serdang, Malaysia: IPGRI-APO, pp. 7590.Google Scholar
Dulloo, ME, Labokas, J, Iriondo, JM, Maxted, N, Lane, A, Laguna, E, Jarvis, A and Kell, S (2008) Chapter 2. Genetic reserve location and design. In: Iriondo, JM, Maxted, N and Dulloo, ME (eds) Conserving Plant Genetic Diversity in Protected Areas. Wallingford, UK: CABI, pp. 2364.Google Scholar
Ervin, J, Mulongoy, KJ, Lawrence, K, Game, E, Sheppard, D, Bridgewater, P, Bennett, G, Gidda, SB and Bos, P (2010) Making Protected Areas Relevant: A guide to integrating protected areas into wider landscapes, seascapes and sectoral plans and strategies. CBD Technical Series No. 44. Montreal, Canada: Convention on Biological Diversity, 94 pp.Google Scholar
ESRI (2011) ArcGIS Desktop release version 10.0. Environmental Systems Research Institute. Redlands. CA.Google Scholar
EURISCO (2018) European Search Catalogue for Plant Genetic Resources belong to wild populations. European Cooperative Programme for Plant Genetic Resources (ECPGR), Rome, Italy. Available online at: https://eurisco.ipk-gatersleben.de (accessed 11 June 2018).Google Scholar
FAO (2017) Voluntary Guidelines for the Conservation and Sustainable Use of Crop Wild Relatives and Wild Food Plants. Commission on Genetic Resources for Food and Agriculture. FAO. Available online at: http://www.fao.org/3/a-i7788e.pdf (accessed 30 May 2018).Google Scholar
Fielder, H, Brotherton, P, Hosking, J, Hopkins, JJ, Ford-Lloyd, BV and Maxted, N (2015) Enhancing the conservation of crop wild relatives in England. PLoS ONE 10: e0130804.Google Scholar
Garcia, RM, Parra-Quijano, M and Iriondo, JM (2017) Identification of ecogeographical gaps in the Spanish Aegilops collections with potential tolerance to drought and salinity. PeerJ 5: e3494.Google Scholar
Guerrant, EO, Fiedler, PL, Havens, K and Maunder, M (2004) Revised genetic sampling guidelines for conservation collections of rare and endangered plants. In: Guerrant, EO, Havens, K and Maunder, M (eds) Ex Situ Plant Conservation: Supporting Species Survival in the Wild. Washington, USA: Island Press, pp. 419441.Google Scholar
Hijmans, RJ and Spooner, DM (2001) Geographic distribution of wild potato species. American Journal of Botany 88: 21012112.Google Scholar
Hijmans, RJ, Guarino, L and Mathur, P (2012) DIVA-GIS version 7.5. User manual. Available online at: http://www.diva-gis.org/documentation (accessed 2 Feb 2017).Google Scholar
Hunter, D and Heywood, V (eds) (2011) Crop Wild Relatives A Manual of in Situ Conservation. NY, USA: Bioversity International. Earthscan, 414 pp. Available online at: http://www.cropwildrelatives.org/fileadmin/templates/cropwildrelatives.org/upload/In_situ_Manual/Crop-wild-relatives-a-manual-of-In-situ-conservation-full.pdf (accessed 10 June 2018).Google Scholar
INEGI (2017) Archivo Histórico de Localidades Geoestadísticas (Historic Archive of Geostatistical Localities) Instituto Nacional de Geografía y Estadística. Available online at: http://www.inegi.org.mx/geo/contenidos/geoestadistica/introduccion.aspx (accessed 17 March 2017).Google Scholar
Iriondo, JM, Maxted, N and Dulloo, E (2008) Conserving Plant Genetic Diversity in Protected Areas: Population Management of Crop Wild Relatives. Wallingford, UK: CAB International.Google Scholar
Iriondo, JM, Maxted, N, Kell, SP, Ford-Lloyd, BV, Lara-Romano, C, Labokas, J and Magos Brehm, J (2012) Quality standards for genetic reserve conservation of crop wild relatives. In: Maxted, N, Dulloo, ME, Ford-Lloyd, BV, Frese, L, Iriondo, JM and Pinheiro de Carvalho, MAA (eds) Agrobiodiversity Conservation: Securing the Diversity of Crop Wild Relatives and Landraces. Wallingford: CABI Publishing, pp. 7277.Google Scholar
Jarvis, A, Lane, A and Hijmans, RJ (2008) The effect of climate change on crop wild relatives. Agriculture Ecosystems and Environment 126: 1323.Google Scholar
Khoury, CK, Heider, B, Castañeda-Álvarez, NP, Achicanoy, HA, Sosa, CC, Miller, RE, Scotland, RW, Wood, JRI, Rossel, G, Eserman, LA, Jarret, RL, Yencho, GC, Bernau, V, Juarez, H, Sotelo, S, de Haan, S and Struik, PC (2015) Distributions, ex situ conservation priorities, and genetic resource potential of crop wild relatives of sweetpotato [Ipomoea batatas (L.) Lam., I. series Batatas]. Frontiers in Plant Science 6: 251.Google Scholar
Lira, R, Téllez, O and Dávila, P (2009) The effects of climate change on the geographic distribution of Mexican wild relatives of domesticated Cucurbitaceae. Genetic Resources and Crop Evolution 56: 691703.Google Scholar
Liu, C, Berry, PM, Dawson, TP and Pearson, RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28: 385393.Google Scholar
Liu, Z, Cook, J, Melia-Hancock, S, Guill, K, Bottoms, C, Garcia, A, Ott, O, Nelson, R, Recker, J, Balint-Kurti, P, Larsson, S, Lepak, N, Buckler, E, Trimble, L, Tracy, W, McMullen, MD and Flint-Garcia, SA (2016) Expanding maize genetic resources with pre-domestication alleles. The Plant Genome 9: 1.Google Scholar
Magos Brehm, J, Kell, S, Thormann, I, Gaisberger, H, Dulloo, E and Maxted, N (2017) Interactive Toolkit for Crop Wild Relative Conservation Planning version 1.0. University of Birmingham, Birmingham, UK and Bioversity International, Rome, Italy. Available online at: http://www.cropwildrelatives.org/conservation-toolkit/ (accessed 15 January 2018).Google Scholar
Maxted, N and Kell, S (2008) Linking in situ and ex situ conservation with use of crop wild relatives. In: Maxted, N, Ford-Lloyd, B, Kell, S, Iriondo, JM, Dulloo, ME and Turok, J (eds) Crop Wild Relative Conservation and Use. Wallingford: CABI International, pp. 450467.Google Scholar
Maxted, N and Kell, S (2009) Establishment of a Global Network for the In Situ Conservation of Crop Wild Relatives: Status and Needs. Rome, Italy: FAO Commission on Genetic Resources for Food and Agriculture.Google Scholar
Maxted, N, Ford-Lloyd, BV and Hawkes, JG (eds) (1997a) Plant Genetic Conservation: The In Situ Approach. London: Chapman and Hall.Google Scholar
Maxted, N, Hawkes, JG, Guarino, L and Sawkins, M (1997b) Towards the selection of taxa for plant genetic conservation. Genetic Resources and Crop Evolution 44: 337348.Google Scholar
Maxted, N, Ford-Lloyd, BV, Jury, S, Kell, S and Scholten, M (2006) Towards a definition of a crop wild relative. Biodiversity and Conservation 15: 26732685.Google Scholar
Maxted, N, Dulloo, E, Ford-Lloyd, BV, Iriondo, JM and Jarvis, A (2008a) Gap analysis: a tool for complementary genetic conservation assessment. Diversity and Distributions 14: 10181030.Google Scholar
Maxted, N, Iriondo, JM, Dulloo, ME and Lane, A (2008b) The integration of PGR conservation with protected area management. In: Iriondo, JM, Maxted, N and Dulloo, ME (eds) Conserving Plant Genetic Diversity in Protected Areas. Wallingford: CAB International, pp. 122.Google Scholar
Maxted, N, Avagyan, A, Frese, L, Iriondo, JM, Magos Brehm, J, Singer, A and Kell, S (2015) ECPGR Concept for in situ conservation of crop wild relatives in Europe. Wild Species Conservation in Genetic Reserves Working Group, European Cooperative Programme for Plant Genetic Resources, Rome, Italy.Google Scholar
Parra-Quijano, M, Draper, D, Torres, E and Iriondo, JM (2008) Ecogeographical representativeness in crop wild relative ex situ collections. In: Maxted, N, Ford-Lloyd, BV, Kell, SP, Iriondo, J, Dulloo, E and Turok, J (eds) Crop Wild Relative Conservation and Use. Wallingford: CABI Publishing, pp. 249273.Google Scholar
Parra-Quijano, M, Iriondo, JM and Torres, E (2012a) Ecogeographical land characterization maps as a tool for assessing plant adaptation and their implications in agrobiodiversity studies. Genetic Resources and Crop Evolution 59: 205217.Google Scholar
Parra-Quijano, M, Iriondo, JM and Torres, E (2012b) Improving representativeness of genebank collections through species distribution models, gap analysis and ecogeographical maps. Biodiversity and Conservation 21: 7996.Google Scholar
Parra-Quijano, M, Torres, E, Iriondo, JM, López, F and Molina, PA (2016) CAPFITOGEN tools. User manual version 2.0. International Treaty on Plant Genetic Resources for Food and Agriculture. FAO. Rome. 251 pp. Available online at: http://www.capfitogen.net/en/ (accessed 24 August 2017).Google Scholar
Phillips, SJ, Anderson, RP and Schapire, RE (2006) Maximum entropy modelling of species geographic distributions. Ecological Modelling 190: 231259.Google Scholar
Phillips, J, Asdal, Å, Magos Brehm, J, Rasmussen, M and Maxted, N (2016) In situ and ex situ diversity analysis of priority crop wild relatives in Norway. Diversity and Distribution 22: 11121126.Google Scholar
Ramírez-Villegas, J, Khoury, K, Jarvis, A, Debouck, DG and Guarino, L (2010) A gap analysis methodology for collecting crop gene pools: a case study with Phaseolus beans. PLoS ONE 5: e13497.Google Scholar
Rubio Teso, ML, Iriondo, JM, Parra, M and Torres, E (2013) National strategy for the conservation of crop wild relatives of Spain. PGR Secure. Available online at: http://www.pgrsecure.bham.ac.uk/sites/default/files/documents/public/National_CWR_Conservation_Strategy_Spain.pdf (accessed 25 Nov 2017).Google Scholar
Rzedowski, J (1991) Diversidad y orígenes de la flora fanerogámica de México. Acta Botánica Mexicana 14: 321.Google Scholar
Sánchez-Cordero, V, Figueroa, F, Illoldi-Rangel, P and Linaje, M (2011) Efectividad del sistema de áreas protegidas para conservar la vegetación natural. In: Koleff, P and Urquiza-Haas, T (coords.) Planeación para la conservación de la biodiversidad terrestre en México: retos en un país megadiverso. DF, Mexico: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad–Comisión Nacional de Áreas Naturales Protegidas, pp. 5986.Google Scholar
Scheldeman, X and van Zonneveld, M (2010) Training Manual on Spatial Analysis of Plant Diversity and Distribution. Rome, Italy: Bioversity International. Available online at: https://www.bioversityinternational.org/fileadmin/user_upload/online_library/publications/pdfs/1431.pdf (accessed 20 July 2017).Google Scholar
SCT (2017) Obra pública e infraestructura (Public works and infrastructure). Datos carreteros abiertos. Secretaría de Comunicaciones y Transportes. Available online at: http://aga.sct.gob.mx/descargas.do (accessed 10 February 2017).Google Scholar
Tanksley, SD and McCouch, SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science (Washington, DC) 277: 10631066.Google Scholar
UNESCO (2011) UNESCO–MAB Biosphere Reserves Directory. Biosphere Reserve Information: Mexico. Sierra de Manantlán. The MAB Programme. United Nations Educational, Scientific and Cultural Organization. Available online at: http://www.unesco.org/mabdb/br/brdir/directory/biores.asp?mode=gen&code=MEX+06 (accessed 10 December 2017).Google Scholar
Ureta, C, Martínez-Meyer, E, Perales, HR and Álvarez-Buylla, ER (2012) Projecting the effects of climate change on the distribution of maize races and their wild relatives in Mexico. Global Change Biology 18: 10731082.Google Scholar
Vavilov, NI (1926) Centers of origin of cultivated plants. Applied Botany and Plant Breeding 16: 248.Google Scholar
Villaseñor, JL (2016) Checklist of the native vascular plants of Mexico. Revista Mexicana de Biodiversidad 87: 559902.Google Scholar
Villaseñor, JL and Ortiz, E (2014) Biodiversidad de las plantas con flores (División Magnoliophyta) en México. Revista Mexicana de Biodiversidad 85: 1341442.Google Scholar
Vincent, H, Wiersema, J, Kell, S, Fielder, H, Dobbie, S, Castañeda-Álvarez, NP, Guarino, L, Eastwood, R, León, B and Maxted, N (2013) A prioritized crop wild relative inventory to help underpin global food security. Biological Conservation 167: 265275.Google Scholar
Zegeye, H (2017) In situ and ex situ conservation: complementary approaches for maintaining biodiversity. International Journal of Research in Environmental Studies 4: 112.Google Scholar
Supplementary material: File

Contreras-Toledo et al. supplementary material

Tables S1-S7 and Figure S1

Download Contreras-Toledo et al. supplementary material(File)
File 649.1 KB