Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T11:56:15.906Z Has data issue: false hasContentIssue false

Bottleneck and gene flow effects impact the genetic structure of seed-propagated apricot populations in Moroccan oasis agroecosystems

Published online by Cambridge University Press:  04 December 2013

Ali Mamouni
Affiliation:
INRA, UR Amélioration des Plantes et Conservation des Ressources Phytogénétiques, Meknés, Morocco Laboratoire AgroBiotech L02B005, Faculté des Sciences et Techniques Guéliz, Université Cadi Ayyad, 40000Marrakech, Morocco
Ahmed El Bakkali
Affiliation:
INRA, UR Amélioration des Plantes et Conservation des Ressources Phytogénétiques, Meknés, Morocco INRA, UMR 1334 Amélioration Génétique et Adaptation des Plantes (AGAP), F-34398Montpellier, France
Patrick Lambert
Affiliation:
INRA Centre PACA – UR1052 Génétique et Amélioration des Fruits et Légumes GAFL, Domaine St Maurice, CS60094, 84143Montfavet Cedex, France
Lamia Krichen
Affiliation:
Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie, Faculté des Sciences de Tunis, Université Tunis El Manar, Campus Universitaire El Manar, 2092Tunis, Tunisia
Ahmed Oukabli
Affiliation:
INRA, UR Amélioration des Plantes et Conservation des Ressources Phytogénétiques, Meknés, Morocco
Jean Marc Audergon
Affiliation:
INRA Centre PACA – UR1052 Génétique et Amélioration des Fruits et Légumes GAFL, Domaine St Maurice, CS60094, 84143Montfavet Cedex, France
Philippe Chatelet
Affiliation:
INRA, UMR 1334 Amélioration Génétique et Adaptation des Plantes (AGAP), F-34398Montpellier, France
Cherkaoui El Modafar
Affiliation:
Laboratoire AgroBiotech L02B005, Faculté des Sciences et Techniques Guéliz, Université Cadi Ayyad, 40000Marrakech, Morocco
Bouchaib Khadari*
Affiliation:
INRA, UMR 1334 Amélioration Génétique et Adaptation des Plantes (AGAP), F-34398Montpellier, France CBNMed, UMR 1334 AGAP, F-34398Montpellier, France
*
* Corresponding author. E-mail: [email protected]

Abstract

In order to highlight the genetic status and origin of Moroccan apricot populations, trees were collected from ten oasis agroecosystems and analysed with AFLP markers. A total of 87 accessions and 12 cultivars grown in Moroccan orchards, including ‘Canino’ and ‘Del Patriarca’ cultivars, were surveyed and compared with in situ Tunisian and ex situ Montfavet (France) collections. Our results highlighted a narrow genetic diversity in the Maghreb region (Tunisia and Morocco) associated with a strong differentiation from the other groups, which supports a bottleneck effect. A similar model was illustrated at a finer geographical scale, i.e. the Draa Valley in Morocco. Genetic structure appeared as two major clusters subdivided into six sub-clusters in which Moroccan germplasm constituted specific groups in comparison with other Mediterranean apricots. Moroccan germplasm was classified into three sub-clusters, two of which were formed by genotypes related to ‘Del Patriarca’ and ‘Canino’, respectively. The present study highlights the wide Moroccan apricot's diversity in traditional agroecosystems, and also suggests a substantial gene flow occurring from recently introduced cultivars (‘Canino’ and ‘Del Patriarca’) to local apricot populations, thus leading to local germplasm diversification through seedling propagation. If we consider its geographical position, the historical diffusion of the species and farming practices, Morocco could be viewed as an additional centre of secondary diversification for apricot. Understanding the origin and specificity of local apricot populations is crucial for managing local collections in regard to adaptive traits for arid and Saharan conditions as well as for introducing local genetic resources into current breeding programmes.

Type
Research Article
Copyright
Copyright © NIAB 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, CH and Hough, LF (1975) Apricots. In: Janick, J and Moore, JN (eds) Advances in Fruit Breeding. Lafayette, IN: Purdue University Press, pp. 367383.Google Scholar
Barbeau, G and El Bouami, A (1980) Apricot Surveys in the southern Morocco. Fruits 35: 115122.Google Scholar
Bernatzky, R and Tanksley, SD (1986) Genetics of action-related sequences in tomato. Theoretical and Applied Genetics 72: 314321.CrossRefGoogle Scholar
Bourguiba, H, Khadari, B, Krichen, L, Trifi-Farah, N, Santoni, S and Audergon, JM (2010) Grafting versus seed propagated apricot populations: two main gene pools in Tunisia evidenced by SSR markers and model-based Bayesian clustering. Genetica 138: 10231032.CrossRefGoogle ScholarPubMed
Bourguiba, H, Audergon, JM, Krichen, L, Trifi-Farah, N, Mamouni, A, Trabelsi, S, D'Onofrio, C, Murat Asma, B, Santoni, S and Khadari, B (2012 a) Loss of genetic diversity as signature of apricot domestication and diffusion into the Mediterranean Basin. BMC Plant Biology 12: 49.CrossRefGoogle ScholarPubMed
Bourguiba, H, Audergon, JM, Krichen, L, Trifi-Farah, N, Mamouni, A, Trabelsi, S and Khadari, B (2012 b) Genetic diversity and differentiation of grafted and seed propagated apricot (Prunus armeniaca L.) in the Maghreb region. Scientia Horticulturae 142: 713.Google Scholar
Bourguiba, H, Khadari, B, Krichen, L, Trifi-Farah, N, Mamouni, A, Trabelsi, S and Audergon, JM (2013) Genetic relationships between local apricot germplasm in North Africa and recent introduced varieties. Scientia Horticulturae 152: 6169.Google Scholar
Couranjou, J (1975) Genetic improvement of apricot by the National Institute of Agronomic Research in France. Bulletin Technique d'Information 300: 397410.Google Scholar
Evanno, G, Regnaut, S and Goudet, J (2005) Detecting the number of clusters of individuals using the software Structure, a simulation study. Molecular Ecology 14: 26112620.CrossRefGoogle ScholarPubMed
Faust, M, Suranyl, D and Nyujto, F (1998) Origin and dissemination of apricot. Horticultural reviews 22: 225266.CrossRefGoogle Scholar
Geuna, F, Toschiand, M and Bassi, D (2003) The use of AFLP markers for cultivar identification in apricot. Plant Breeding 122: 526531.Google Scholar
Hagen, LS, Khadari, B, Lambert, P and Audergon, JM (2002) Genetic diversity in apricot revealed by AFLP markers: species and cultivar comparisons. Theoretical and Applied Genetics 105: 298305.CrossRefGoogle ScholarPubMed
Jakobsson, M and Rosenberg, NA (2007) Clumpp: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23: 18011806.CrossRefGoogle ScholarPubMed
Khadari, B, Krichen, L, Lambert, P, Marrakchi, M and Audergon, LM (2006) Genetic structure in Tunisian apricot, Prunus armeniaca L., populations propagated by grafting: a signature of bottleneck effects and ancient propagation by seedlings. Genetic Resources and Crop Evolution 53: 811819.Google Scholar
Kostina, KF (1969) The use of varietal resources of apricots for breeding. Trudy Gosudarstvennogo Nikitskogo botanicheskogo Sada 40: 4563.Google Scholar
Krichen, L, Martins, JMS, Lambert, P, Daaloul, A, Trifi-Farah, N, Marrakchi, M and Audergon, JM (2008) Using AFLP markers for the analysis of the genetic diversity of apricot cultivars in Tunisia. Journal of American Society for Horticultural Science 133: 204212.Google Scholar
Lefevre, V, Palloix, A and Rives, M (1993) Nuclear RFLP between pepper cultivars (Capsicum annuum L.). Euphytica 71: 189199.Google Scholar
Lynch, M and Milligan, B (1994) Analysis of population genetic structure with RAPD markers. Molecular Ecology 3: 9199.Google Scholar
Panaud, O, Chaib, A and Sarr, A (2002) Dynamic conservation of apricot Prunus armeniaca in Saharian oases: use of AFLP markers to assess genetic diversity in traditional orchards. Euphytica 128: 301305.Google Scholar
Perrier, X, Flori, A and Bonnot, F (2003) Data analysis methods. In: Hamon, P, Seguin, M, Perrier, X and Glaszmann, JC (eds) Genetic Diversity of Cultivated Tropical Plants. Montpellier: Enfield, Science Publishers, pp. 4376.Google Scholar
Pritchard, JK, Stephens, M and Donnelly, P (2000) Inference of population structure from multilocus genotype data. Genetics 155: 945959.CrossRefGoogle ScholarPubMed
R Development Core Team R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria . ISBN 3-900051-07-0. Available from http://www.R-project.org/ 2011.Google Scholar
Sokal, RR and Sneath, PHA (1963) Principles of Numerical Taxonomy. San Francisco: Freeman, p. 359.Google Scholar
Valdeyron, G and Crossa-Raynaud, P (1950) The fruits of Tunisia. Annals de l‘Institut Natational de la Recherche Argonomique de Tunis 23: 6582.Google Scholar
Vekemans X (2002) AFLP-SURV version 1.0. Distributed by the author. Laboratoire de Génétique et Ecologie Végétale, Université Libre de Bruxelles, Belgium..Google Scholar
Ward, JH (1963) Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58: 236244.Google Scholar
Zhivotovsky, LA (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Molecular Ecology 8: 907913.CrossRefGoogle ScholarPubMed
Supplementary material: File

Mamouni Supplementary Material

Supplementary Material

Download Mamouni Supplementary Material(File)
File 527.4 KB