Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T03:05:42.643Z Has data issue: false hasContentIssue false

The stress–weight interface in metre*

Published online by Cambridge University Press:  19 December 2017

Kevin M. Ryan*
Affiliation:
Harvard University
*

Abstract

Metres are typically classified as being accentual (mapping stress, as in English) or quantitative (mapping weight, as in Sanskrit). This article treats the less well-studied typology of hybrid accentual-quantitative metres, which fall into two classes. In the first, stress and weight map independently onto the same metre, as attested in Latin and Old Norse. In the second, stress and weight interact, such that weight is regulated more strictly for stressed than unstressed syllables, as illustrated here by new analyses of Dravidian and Finno-Ugric metres. In both of these latter cases (as well as in Serbo-Croatian), strictness of weight-mapping is modulated gradiently by stress level.

Type
Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

I would like to thank Lev Blumenfeld, Dieter Gunkel, Bruce Hayes and Paul Kiparsky for their input on various stages of this project, as well as Ellen Kaisse, four anonymous referees and an associate editor for their helpful comments on the manuscript. This work also benefited from discussion at AMP 2016.

References

Allen, W. Sidney (1973). Accent and rhythm. Cambridge: Cambridge University Press.Google Scholar
Anttila, Arto (2010). Word stress in Finnish. Colloquium handout, Yale University. Available (August 2017) at https://web.stanford.edu/~anttila/research/yale-ho-2010-final.pdf.Google Scholar
Árnason, Kristján (1991). The rhythms of dróttkvætt and other Old Icelandic metres. Reykjavik: Institute of Linguistics, University of Iceland.Google Scholar
Árnason, Kristján (1998). Review of Gade (1995). Alvíssmál 8. 98109.Google Scholar
Árnason, Kristján (2009). On Kuhn's laws and Craigie's law in Old Icelandic poetry. In Dewey, Tonya Kim & Frog, (eds.) Versatility in versification: multidisciplinary approaches to metrics. New York: Lang. 3959.Google Scholar
Aroui, Jean-Louis & Arleo, Andy (eds.) (2009). Towards a typology of poetic forms: from language to metrics and beyond. Amsterdam & Philadelphia: Benjamins.Google Scholar
Barnes, Harry R. (1986). The colometric structure of Homeric hexameter. Greek, Roman, and Byzantine Studies 27. 125150.Google Scholar
Barnes, Jonathan (2002). Positional neutralization: a phonologization approach to typological patterns. PhD dissertation, University of California, Berkeley.Google Scholar
Beckman, Jill N. (2011). Positional faithfulness: an Optimality Theoretic treatment of phonological asymmetries. New York & London: Routledge.Google Scholar
Biggs, Henry (1996). A statistical analysis of the metrics of the classic French decasyllable and the classic French alexandrine. PhD dissertation, University of California, Los Angeles.Google Scholar
Blumenfeld, Lev (2015). Meter as faithfulness. NLLT 33. 79125.Google Scholar
Blumenfeld, Lev (2016). Generative metrics: an overview. Language and Linguistics Compass 10. 413430.Google Scholar
Boldrini, Sandro (1999). Prosodie und Metrik der Römer. Translated by Häuptli, Bruno W.. Stuttgart & Leipzig: Teubner.CrossRefGoogle Scholar
Bross, Christoph, Gunkel, Dieter & Ryan, Kevin M. (2014). Caesurae, bridges, and the colometry of four Tocharian B meters. Indo-European Linguistics 2. 123.Google Scholar
Christdas, Prathima (1988). The phonology and morphology of Tamil. PhD dissertation, Cornell University.Google Scholar
Cole, Deborah & Miyashita, Mizuki (2006). The function of pauses in metrical studies: acoustic evidence from Japanese verse. In Dresher & Friedberg (2006). 173–192.Google Scholar
de Lacy, Paul (2004). Markedness conflation in Optimality Theory. Phonology 21. 145199.Google Scholar
Dell, François & Halle, John (2009). Comparing musical textsetting in French and in English songs. In Aroui & Arleo (2009). 63–78.CrossRefGoogle Scholar
Deo, Ashwini S. (2007). The metrical organization of Classical Sanskrit verse. JL 43. 63114.Google Scholar
Deo, Ashwini S. & Kiparsky, Paul (2011). Poetries in contact: Arabic, Persian, and Urdu. In Lotman, Mihail & Lotman, Maria-Kristiina (eds.) Frontiers in comparative prosody. Bern & New York: Lang. 147173.Google Scholar
Devine, Andrew M. & Stephens, Laurence (1976). The Homeric Hexameter and a basic principle of metrical theory. Classical Philology 71. 141163.Google Scholar
Dresher, B. Elan & Friedberg, Nila (eds.) (2006). Formal approaches to poetry: recent developments in metrics. Berlin & New York: Mouton de Gruyter.Google Scholar
Duckworth, George E. (1969). Vergil and classical hexameter poetry: a study in metrical variety. Ann Arbor: University of Michigan Press.Google Scholar
Dunkel, G. E. (1996). The relative stylistic orality of Plautus and Terence, as measured by enjambment-types: with remarks on enjambment in Literary Saturnians and Menander. Die Sprache 38. 201212.Google Scholar
Emeneau, Murray B. (1984). Toda grammar and texts. Philadelphia: American Philosophical Society.Google Scholar
Fabb, Nigel & Halle, Morris (2008). Meter in poetry: a new theory. Cambridge: Cambridge University Press.Google Scholar
Gade, Kari Ellen (1995). The structure of Old Norse dróttkvætt poetry. Ithaca: Cornell University Press.Google Scholar
Gasparov, M. L. (1980). Quantitative methods in Russian metrics: achievements and prospects. In Smith, G. S. (ed.) Russian poetics in translation. Vol. 7: Metre, rhythm, stanza, rhyme. Colchester: University of Essex. 119.Google Scholar
Golston, Chris (1998). Constraint-based metrics. NLLT 16. 719770.Google Scholar
Golston, Chris & Riad, Tomas (2000). The phonology of Classical Greek meter. Linguistics 38. 99167.Google Scholar
Golston, Chris & Riad, Tomas (2005). The phonology of Greek lyric meter. JL 41. 77115.Google Scholar
Gordon, Matthew (2004). Positional weight constraints in Optimality Theory. LI 35. 692703.Google Scholar
Gunkel, Dieter & Ryan, Kevin (2011). Hiatus avoidance and metrification in the Rigveda. In Jamison, Stephanie W., Melchert, H. Craig & Vine, Brent (eds.) Proceedings of the 22nd Annual UCLA Indo-European Conference. Bremen: Hempen. 5368.Google Scholar
Hall, Daniel Currie (2006). Modelling the linguistics–poetics interface. In Dresher & Friedberg (2006). 233–249.Google Scholar
Halle, Morris (1970). On meter and prosody. In Bierwisch, Manfred & Heidolph, Karl Erich (eds.) Progress in linguistics. The Hague & Paris: Mouton. 6480.Google Scholar
Hanson, Kristin (1992). Resolution in modern meters. PhD dissertation, Stanford University.Google Scholar
Hanson, Kristin (2001). Quantitative meter in English: the lesson of Sir Philip Sidney. English Language and Linguistics 5. 4191.Google Scholar
Hanson, Kristin (2006) Shakespeare's lyric and dramatic metrical styles. In Dresher & Friedberg (2006). 111–133.Google Scholar
Hanson, Kristin (2009a). Metrical alignment. In Aroui & Arleo (2009). 267–286.Google Scholar
Hanson, Kristin (2009b). Nonlexical word stress in the English iambic pentameter: a study of John Donne. In Hanson & Inkelas (2009). 21–61.Google Scholar
Hanson, Kristin & Inkelas, Sharon (eds.) (2009) The nature of the word: studies in honor of Paul Kiparsky. Cambridge, Mass.: MIT Press.Google Scholar
Hanson, Kristin & Kiparsky, Paul (1996). A parametric theory of poetic meter. Lg 72. 287335.Google Scholar
Hart, George L. & Heifetz, Hank (1988). The Forest book of the Rāmāyaṇa of Kampaṉ. Berkeley: University of California Press.Google Scholar
Hayes, Bruce (1983). A grid-based theory of English meter. LI 14. 357393.Google Scholar
Hayes, Bruce (1988). Metrics and phonological theory. In Newmeyer, Frederick J. (ed.) Linguistics: the Cambridge survey. Vol. 2. Linguistic theory: extensions and implications. Cambridge: Cambridge University Press. 220249.Google Scholar
Hayes, Bruce (2010). Review of Fabb & Halle (2008). Lingua 120. 25152521.Google Scholar
Hayes, Bruce & Moore-Cantwell, Claire (2011). Gerard Manley Hopkins’ sprung rhythm: corpus study and stochastic grammar. Phonology 28. 235282.CrossRefGoogle Scholar
Hayes, Bruce & Wilson, Colin (2008). A maximum entropy model of phonotactics and phonotactic learning. LI 39. 379440.Google Scholar
Hayes, Bruce, Wilson, Colin & Shisko, Anne (2012). Maxent grammars for the metrics of Shakespeare and Milton. Lg 88. 691731.Google Scholar
Higbie, Carolyn (1990). Measure and music: enjambement and sentence structure in the Iliad. Oxford: Clarendon.Google Scholar
Jakobson, Roman (1933). Über den Versbau der serbokroatischen Volksepen. Archives Néerlandaises de Phonétique Expérimentale 8–9. 4453.Google Scholar
Jakobson, Roman (1966). Slavic epic verse: studies in comparative metrics. In Jakobson, Roman. Selected writings. Vol. 4: Slavic epic studies. The Hague & Paris: Mouton. 414463.Google Scholar
Janson, Tore (1975). Prose rhythm in Medieval Latin from the 9th to the 11th century. Stockholm: Almqvist & Wiksell.Google Scholar
Kager, René (1999). Optimality Theory. Cambridge: Cambridge University Press.Google Scholar
Kambaṉ, (1956). Kampar Iyaṟṟiya Irāmāyaṇam. Critical edition of the Kamparāmāyaṇam (c. 1200 ce). Annamalai: Annamalai University Press.Google Scholar
Kaukonen, Väinö (1979). Lönnrot ja Kalevala. Helsinki: Suomalaisen Kirjallisuuden Seura.Google Scholar
Keane, Elinor L. (2006). Prominence in Tamil. Journal of the International Phonetic Association 36. 120.Google Scholar
Kiparsky, Paul (1968). Metrics and morphophonemics in the Kalevala. In Gribble, Charles E. (ed.) Studies presented to Professor Roman Jakobson by his students. Cambridge: Slavica. 137148.Google Scholar
Kiparsky, Paul (to appear). Indo-European origins of the Greek hexameter. In Gunkel, Dieter & Hackstein, Olav (eds.) Language and meter. Leiden: Brill.Google Scholar
Knight, W. F. Jackson (1931). Homodyne in the fourth foot of the Vergilian hexameter. The Classical Quarterly 25. 184194.Google Scholar
Knight, W. F. Jackson (1950). Accentual symmetry in Vergil. 2nd edn. Oxford: Blackwell.Google Scholar
Kolachina, Sudheer (2016). Stress and vowel harmony in Telugu. Master's thesis, MIT.Google Scholar
Krishnamurti, Bhadriraju (2003). The Dravidian languages. Cambridge: Cambridge University Press.Google Scholar
Kuhn, Hans (1983). Das dróttkvætt. Heidelberg: Winter.Google Scholar
Leino, Pentti (1986). Language and metre: metrics and the metrical system of Finnish. Translated by Chesterman, Andrew. Helsinki: Suomalaisen Kirjallisuuden Seura.Google Scholar
Leino, Pentti (1994). The Kalevala metre and its development. In Siikala, Anna-Leena & Vakimo, Sinikka (eds.) Songs beyond the Kalevala: transformations of oral poetry. Helsinki: Suomalaisen Kirjallisuuden Seura. 5674.Google Scholar
Lönnrot, Elias (1849). Kalevala taikka vanhoja Karjalan runoja Suomen kansan muinoisista ajoista. Helsinki: Suomalaisen Kirjallisuuden Seura.Google Scholar
McPherson, Laura & Ryan, Kevin M. (to appear). Tone-tune association in Tommo So (Dogon) folk songs. Ms, Dartmouth College & Harvard University. Lg.Google Scholar
Mohanan, Tara (1989). Syllable structure in Malayalam. LI 20. 589625.Google Scholar
Newcomer, Charles B. (1908). The effect of enclitics on the accent of words in Latin. The Classical Journal 3. 150153.Google Scholar
Niklas, Ulrike (1988). Introduction to Tamil prosody. Bulletin de l’École Française d'Extrême-Orient 77. 165227.Google Scholar
Parthasarathy, R. (1993). The tale of an anklet: an epic of South India. New York: Columbia University Press.Google Scholar
Pharr, Clyde (1964). Vergil's Aeneid. Books I–VI. Revised edn. Boston: Heath.Google Scholar
Piera, Carlos José (1980). Spanish verse and the theory of meter. PhD thesis, University of California, Los Angeles.Google Scholar
Prince, Alan (1989). Metrical forms. In Kiparsky, Paul & Youmans, Gilbert (eds.) Rhythm and meter. San Diego: Academic Press. 4580.Google Scholar
Prince, Alan (1990). Quantitative consequences of rhythmic organization. CLS 26:2. 355398.Google Scholar
Prince, Alan (1999). Paninian relations. Lecture given at the University of Marburg. Available (August 2017) at http://ruccs.rutgers.edu/prince.Google Scholar
Prince, Alan & Smolensky, Paul (1993). Optimality Theory: constraint interaction in generative grammar. Ms, Rutgers University & University of Colorado, Boulder. Published 2004, Malden, Mass. & Oxford: Blackwell.Google Scholar
Rajam, V. S. (1992). A reference grammar of classical Tamil poetry (150 B.C.–pre-fifth/sixth century A.D.) . Philadelphia: American Philosophical Society.Google Scholar
Ross, David O. (2007). Virgil's Aeneid: a reader's guide. Malden, Mass.: Blackwell.Google Scholar
Russom, Geoffrey (1998). Beowulf and Old Germanic metre. Cambridge: Cambridge University Press.Google Scholar
Ryan, Kevin M. (2011). Gradient syllable weight and weight universals in quantitative metrics. Phonology 28. 413454.Google Scholar
Sadeniemi, Matti (1949). Metriikkamme perusteet ja sovellutusta moderneihin antiikin mittoihin. Helsinki: Suomalaisen Kirjallisuuden Seura.Google Scholar
Sadeniemi, Matti (1951). Die Metrik des Kalevala-Verses. Helsinki: Suomilainen Tiedeakatemia.Google Scholar
Sievers, Eduard (1893). Altgermanische Metrik. Halle: Niemeyer.Google Scholar
Smith, Jennifer L. (2002). Phonological augmentation in prominent positions. PhD dissertation, University of Massachusetts, Amherst.Google Scholar
Sturtevant, E. H. (1919). The coincidence of accent and ictus in the Roman dactylic poets. Classical Philology 14. 373385.Google Scholar
Sturtevant, E. H. (1923a). Harmony and clash of accent and ictus in the Latin hexameter. Transactions of the American Philological Association 54. 5173.Google Scholar
Sturtevant, E. H. (1923b). The ictus of classical verse. The American Journal of Philology 44. 319338.Google Scholar
Tarlinskaja, Marina (1976). English verse: theory and history. The Hague & Paris: Mouton.Google Scholar
Tarlinskaja, Marina & Teterina, L. M. (1974). Verse – prose – metre. Linguistics 129. 6386.Google Scholar
Wilson, Colin & George, Benjamin (2008). Maxent grammar tool. Software package. Available (August 2017) at http://www.linguistics.ucla.edu/people/hayes/MaxentGrammarTool.Google Scholar
Zec, Draga (2009). The prosodic word as a unit in poetic meter. In Hanson & Inkelas (2009). 63–94.Google Scholar
Zvelebil, Kamil V. (1970). Comparative Dravidian phonology. The Hague & Paris: Mouton.Google Scholar
Zvelebil, Kamil V. (1989). Classical Tamil prosody: an introduction. Madras: New Era Publications.Google Scholar