Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T19:46:39.687Z Has data issue: false hasContentIssue false

Idealization and Galileo’s Proto-Inertial Principle

Published online by Cambridge University Press:  01 January 2022

Abstract

Galileo proposed what has been called a proto-inertial principle, according to which a body in horizontal motion will conserve its motion. This statement is only true in counterfactual circumstances where no impediments are present. This article analyzes how Galileo could have been justified in ascribing definite properties to this idealized motion. This analysis is then used to better understand the relation of Galileo’s proto-inertial principle to the classical inertial principle.

Type
Research Article
Copyright
Copyright © The Philosophy of Science Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chalmers, A. 1993. “Galilean Relativity and Galileo’s Relativity.” In Correspondence, Invariance and Heuristics, ed. French, S. and Kamminga, H., 189205. Dordrecht: Kluwer.CrossRefGoogle Scholar
Coffa, J. A. 1968. “Galileo’s Concept of Inertia.” Physis 10 (4): 261–81..Google Scholar
Damerow, P., Freudenthal, G., McLaughlin, P., and Renn, J.. 2004. Exploring the Limits of Preclassical Mechanics. 2nd ed. New York: Springer.CrossRefGoogle Scholar
Festa, E., and Roux, S.. 2006. “La Moindre Petite Force Suffit à Mouvoir un Corps sur l’Horizontal: L’Émergence d’un Principe Mécanique et son Devenir Cosmologique.” Galilaeana 3:123–47.Google Scholar
Galilei, G. 1890. Le Opere di Galileo Galilei. Florence: Barbera.Google Scholar
Hooper, W. 1998. “Inertial Problems in Galileo’s Preinertial Framework.” In The Cambridge Companion to Galileo, ed. Machamer, P., 146–74. Cambridge: Cambridge University Press.Google Scholar
Koertge, N. 1977. “Galileo and the Problem of Accidents.” Journal of the History of Ideas 38 (3): 389408..CrossRefGoogle Scholar
Koyré, A. 1966. Études Galiléennes. Paris: Hermann.Google Scholar
McMullin, E. 1985. “Galilean Idealization.” Studies in History and Philosophy of Science 16 (3): 247–73..CrossRefGoogle Scholar
Miller, D. M. 2014. Representing Space in the Scientific Revolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Palmerino, C. R. 2016. “Reading the Book of Nature: The Ontological and Epistemological Underpinnings of Galileo’s Mathematical Realism.” In The Language of Nature: Reassessing the Mathematization of Natural Philosophy in the Seventeenth Century, ed. Gorham, G., Hill, B., Slowik, E., and Waters, K., 2950. Minneapolis: University of Minnesota Press.CrossRefGoogle Scholar
Renn, J., Damerow, P., and Rieger, S.. 2000. “Hunting the White Elephant: When and How Did Galileo Discover the Law of Fall?Science in Context 13 (3/4): 299419.CrossRefGoogle Scholar
Roux, S. 2006. “Découvrir le Principe d’Inertie.” Recherches sur la Philosophie et le Langage 24:453515.Google Scholar
Stevin, S. 1585. Dialectike ofte Bewysconst. Leyden: Plantijn.Google Scholar
Stevin, S. 1955. The Principal Works of Simon Stevin. Vol. 1, General Introduction: Mechanics. Amsterdam: Swets & Zeitlinger.Google Scholar
Stevin, S. 1961. The Principal Works of Simon Stevin. Vol. 3, Astronomy: Navigation. Amsterdam: Swets & Zeitlinger.Google Scholar
Van Dyck, M. 2017. “Motion and Proportion in Simon Stevin’s Mechanics.” In Eppur si muove: Doing History and Philosophy of Science with Peter Machamer, ed. Adams, M., Biener, Z., Feest, U., and Sullivan, J., 2137. Cham: Springer.CrossRefGoogle Scholar
Weisberg, M. 2007. “Three Kinds of Idealization.” Journal of Philosophy 58:207–33.Google Scholar
Wisan, W. L. 1974. “The New Science of Motion: A Study of Galileo’s De motu locali.Archive for History of Exact Sciences 13:103306.CrossRefGoogle Scholar