Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Pietsch, Wolfgang
2016.
The Philosophy of Historical Case Studies.
Vol. 319,
Issue. ,
p.
49.
Pietsch, Wolfgang
and
Wernecke, Jörg
2017.
Berechenbarkeit der Welt?.
p.
13.
Pietsch, Wolfgang
and
Wernecke, Jörg
2017.
Berechenbarkeit der Welt?.
p.
37.
McCue, Molly E.
and
McCoy, Annette M.
2017.
The Scope of Big Data in One Medicine: Unprecedented Opportunities and Challenges.
Frontiers in Veterinary Science,
Vol. 4,
Issue. ,
McCue, M. E.
and
McCoy, A. M.
2019.
Harnessing big data for equine health.
Equine Veterinary Journal,
Vol. 51,
Issue. 4,
p.
429.
Bruynseels, Koen
2020.
When nature goes digital: routes for responsible innovation.
Journal of Responsible Innovation,
Vol. 7,
Issue. 3,
p.
342.
Northcott, Robert
2020.
Big data and prediction: Four case studies.
Studies in History and Philosophy of Science Part A,
Vol. 81,
Issue. ,
p.
96.
Knüsel, Benedikt
and
Baumberger, Christoph
2020.
Understanding climate phenomena with data-driven models.
Studies in History and Philosophy of Science Part A,
Vol. 84,
Issue. ,
p.
46.
Knüsel, Benedikt
Baumberger, Christoph
Zumwald, Marius
Bresch, David N.
and
Knutti, Reto
2020.
Argument-based assessment of predictive uncertainty of data-driven environmental models.
Environmental Modelling & Software,
Vol. 134,
Issue. ,
p.
104754.
Kuhn, Michael
2021.
Big Data, AI und die Freude am Ingenieurwesen.
Chemie Ingenieur Technik,
Vol. 93,
Issue. 3,
p.
364.
Fonseca, Fred
2021.
Whether or when: The question on the use of theories in data science.
Journal of the Association for Information Science and Technology,
Vol. 72,
Issue. 12,
p.
1593.
López-Rubio, Ezequiel
and
Ratti, Emanuele
2021.
Data science and molecular biology: prediction and mechanistic explanation.
Synthese,
Vol. 198,
Issue. 4,
p.
3131.
Pietsch, Wolfgang
2021.
Big Data.
Skees, Murray
2022.
A new traditional theory: Fetishizing big data analytics.
Constellations,
Vol. 29,
Issue. 2,
p.
146.
Lloyd, Elisabeth
Lusk, Greg
Gluck, Stuart
and
McGinnis, Seth
2022.
Varieties of Data-Centric Science: Regional Climate Modeling and Model Organism Research.
Philosophy of Science,
Vol. 89,
Issue. 4,
p.
802.
Fonseca, Fred
2022.
Data objects for knowing.
AI & SOCIETY,
Vol. 37,
Issue. 1,
p.
195.
Nyrup, Rune
and
Robinson, Diana
2022.
Explanatory pragmatism: a context-sensitive framework for explainable medical AI.
Ethics and Information Technology,
Vol. 24,
Issue. 1,
Pierce, Robin L.
Van Biesen, Wim
Van Cauwenberge, Daan
Decruyenaere, Johan
and
Sterckx, Sigrid
2022.
Explainability in medicine in an era of AI-based clinical decision support systems.
Frontiers in Genetics,
Vol. 13,
Issue. ,
Zednik, Carlos
and
Boelsen, Hannes
2022.
Scientific Exploration and Explainable Artificial Intelligence.
Minds and Machines,
Vol. 32,
Issue. 1,
p.
219.
Pietsch, Wolfgang
2022.
On the Epistemology of Data Science.
Vol. 148,
Issue. ,
p.
175.