Published online by Cambridge University Press: 01 January 2022
Richard Jeffrey espoused an antifoundationalist variant of Bayesian thinking that he termed ‘Radical Probabilism’. Radical Probabilism denies both the existence of an ideal, unbiased starting point for our attempts to learn about the world and the dogma of classical Bayesianism that the only justified change of belief is one based on the learning of certainties. Probabilistic judgment is basic and irreducible. Bayesian conditioning is appropriate when interaction with the environment yields new certainty of belief in some proposition but leaves one's conditional beliefs untouched (the ‘Rigidity’ condition). Although Richard Jeffrey denied the general applicability of this condition, one of his main contributions to probabilistic thinking is a form of belief updating—now typically called ‘Jeffrey conditioning’ or ‘probability kinematics’—that is appropriate in circumstances in which Rigidity is satisfied, but where the interaction causes one to reevaluate one's probability judgments over some partition of the possibility space without conferring certainty on any particular element. The most familiar occasion for Jeffrey conditioning is receipt of uncertain evidence: things partially perceived or remembered. But it also serves to illuminate belief updating occasioned by a change in one's degrees of conditional belief, a kind of belief change largely ignored by classical Bayesianism. I argue that such changes in conditional belief can also be basic (in the sense of not being analyzable as a consequence of conditioning on factual information) and offer a kinematical model for a particular kind change in conditional belief. Both are applied to changes in preference. Finally, I argue that Rigidity can fail when changes of belief give inferential grounds for changes in conditional belief (and vice versa). These failures show that conditioning methods are properly regarded, not as valid rules of inference, but as tools in the ‘art of judgment’.
This paper is dedicated to the memory of Richard Jeffrey, from whom I learned so much.