Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T03:57:42.770Z Has data issue: false hasContentIssue false

Entering New Fields: Exploratory Uses of Experimentation

Published online by Cambridge University Press:  01 April 2022

Friedrich Steinle*
Affiliation:
University of Göttingen
*
Institut für Wissenschaftsgeschichte, Georg-August-Universität, Humboldtallee 11, 37073 Göttingen, Germany; e-mail: [email protected].

Abstract

Starting with some illustrative examples, I develop a systematic account of a specific type of experimentation—an experimentation which is not, as in the “standard view”, driven by specific theories. It is typically practiced in periods in which no theory or—even more fundamentally—no conceptual framework is readily available. I call it exploratory experimentation and I explicate its systematic guidelines. From the historical examples I argue furthermore that exploratory experimentation may have an immense, but hitherto widely neglected, epistemic significance.

Type
Symposium: Patterns in the Interrelation of Experiment, Instrumentation, and Theory
Copyright
Copyright © Philosophy of Science Association 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ampère, A.-M. (1820), “Memoire sur l'Action mutuelle entre deux courans électriques, entre un courant électrique et un aimant ou le globe terrestre, et entre deux aimans”, Annales de Chimie et de Physique 15: 59–76, 170218.Google Scholar
Blondel, C. (1982), A.-M. Ampère et le création de l'électrodynamique (1820–1827). Paris: Bibliothèque Nationale.Google Scholar
Burian, R. M. (1997), “Exploratory Experimentation and the Role of Histochemical Techniques in the Work of Jean Brachet, 1938–1952”, History and Philosophy of the Life Sciences 19: 2745.Google ScholarPubMed
Cantor, G. (1991), Michael Faraday: Sandemanian and Scientist. Basingstoke: Macmillan.Google Scholar
Cantor, G. N., Gooding, D. C., and James, F.A.J.L. (1991), Faraday. London: Macmillan.CrossRefGoogle Scholar
Cartwright, N. (1983), How the Laws of Physics Lie. Oxford: Clarendon Press.CrossRefGoogle Scholar
Faraday, M. (1932), Faraday's Diary, v. 1. Martin, T. (ed.). London: Bell.Google Scholar
Galison, P. (1988), “Philosophy in the Laboratory”, The Journal of Philosophy 85: 525527.CrossRefGoogle Scholar
Gilbert, W. (1600), De Magnete magnetisque corporibus, … London: Petrus Short.Google Scholar
Goethe, J. W. (1798), “Erfahrung und Wissenschaft”, Goethes Werke (Hamburger Ausgabe), 13: 2325.Google Scholar
Gooding, D. C. (1990), Experiment and the Making of Meaning: Human Agency in Scientific Observation and Experiment. Dordrecht: Kluwer.CrossRefGoogle Scholar
Hacking, I. (1983), Representing and Intervening: Introductory Topics in the Philosophy of Natural Science. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hacking, I. (1988), “On the Stability of the Laboratory Sciences”, The Journal of Philosophy 85: 507514.CrossRefGoogle Scholar
Heilbron, J. (1979), Electricity in the 17th and 18th Centuries. Berkeley: University of California Press.CrossRefGoogle Scholar
Hentschel, K. (1997), “The Interplay of Instrumentation, Experiment, and Theory: Patterns Emerging from Case Studies on Solar Redshift, 1890–1960”, Philosophy of Science 64 (Proceedings): this issue.CrossRefGoogle Scholar
Hiebert, E. (1995), “Electric Discharge in Rarefied Gases: The Dominion of Experiment. Faraday. Plücker. Hittorf.”, in Kox, A. J. and Siegel, D. M. (eds.), No Truth Except in Details. Essays in Honor of Martin Klein. Dordrecht: Kluwer, pp. 95134.CrossRefGoogle Scholar
Hofmann, J. R. (1995), André-Marie Ampère. Oxford: Blackwell.Google Scholar
Klein, U. (1996), “The Chemical Workshop Tradition and the Experimental Practice—Discontinuities within Continuities”, Science in Context 9: 251287.Google Scholar
Lenard, P. (1906), Über Kathodenstrahlen. (Nobel-Vortrag). Berlin: de Gruyter.Google Scholar
Romo, J. and Doncel, M. G. (1994), “Faraday's Initial Mistake Concerning the Direction of Induced Currents, and the Manuscript of Series I of his Researches”, Archive for History of Exact Sciences 47: 291385.CrossRefGoogle Scholar
Ross, S. (1965), “The Search for Electromagnetic Induction 1820–1831”, Notes and Records of the Royal Society of London 20: 184219.Google Scholar
Sargent, R.-M. (1995), “Exploratory Experiments: Scientists at Play”, unpublished manuscript of a History of Science Society lecture.Google Scholar
Steinle, F. (1994), “Experiment, Speculation and Law: Faraday's Analysis of Arago's Wheel”, in Hull, D., Forbes, M. and Burian, R. M. (eds.), PSA 1994, v. 1. East Lansing, MI: Philosophy of Science Association, pp. 293303.Google Scholar
Steinle, F. (1995), “Looking for a”Simple Case“: Faraday and Electromagnetic Rotation”, History of Science 33: 179202.CrossRefGoogle Scholar
Steinle, F. (1996), “Work, Finish, Publish? The formation of the Second Series of Faraday's ‘Experimental Researches in Electricity’”, Physis 33:141–200.Google Scholar
Steinle, F. (1998), “Exploratives vs. theoriebestimmtes Experimentieren: Ampères erste Arbeiten zum Elektromagnetismus”, in Heidelberger, M. and Steinle, F. (eds.), Experimental Essays—Versuche zum Experiment. Baden-Baden: Nomos Verlag (in press).Google Scholar
Trumpler, M. (1992), Questioning Nature: Experimental Investigations of Animal Electricity in Germany, 1791–1810. Ph.D. Dissertation, Yale University.Google Scholar
Trumpler, M. (1997), “Verification and Variation: Patterns of Experimentation in Investigations of Galvanism in Germany, 1790–1800”, Philosophy of Science 64 (Proceedings): this issue.CrossRefGoogle Scholar