The surface coat of the infective larvae of the parasitic nematode Trichinella spiralis was characterized with respect to its
biophysical properties, morphology and composition. Labelling of larvae with the fluorescent surface probe PKH26 was
lost after activation (by incubation in mammalian medium containing trypsin and bile), or following pronase treatment.
Electron microscopical examination revealed that pronase treatment resulted in the loss of an amorphous surface layer
only, further demonstrating the specificity of PKH26 for the larval surface coat. Surface coat shedding was inhibited by
sodium azide and carbonyl cyanide, or by incubation of larvae at 4°C, suggesting the shedding process required metabolic
energy. Pre-labelled, unactivated larvae demonstrated continuous slow surface coat shedding and could be re-labelled
with PKH26, indicating that the shed coat is replaced in these parasites. However, pre-labelled larvae which were activated
failed to re-label with the probe, suggesting that activation provides an irreversible trigger for surface changes. PKH26,
therefore, is a useful marker for larval activation. Examination of the shed coat material by scanning electron microscopy
revealed 2 types of morphologies; one comprising thin multilaminate sheets and the other of amorphous material with
ridges producing a fingerprint-like motif. Western- and lectin-blotting of the shed coat material demonstrated 2 prominent
entities; a 90 kDa glycoprotein, which bound Datura stramonium agglutinin and was resistant to N- and O-glycanase
treatment and a 47–60 kDa set of protein(s). Analysis of the surface lipids by electrospray mass spectometry revealed the
presence of lysophosphatidic acid (lysoPA, C14[ratio ]2) and an unidentifiable component of 339·4 Da. These two lipids
constituted 36·9% and 36% by mass of surface coat lipids respectively. The presence of lysoPA was confirmed by thin
layer chromatography, which also detected phosphatidic acid (PA). The polar lipids detected in solvent rinses of intact
parasites by electrospray mass spectrometry were PI (C48[ratio ]4), PE (C40[ratio ]4 and C38[ratio ]4), PS (C40[ratio ]4), lysoPC (C20[ratio ]2 and
C18[ratio ]2) and lysoPA (C14[ratio ]2). These observations are discussed with respect to the role of the surface coat and its shedding
in the T. spiralis host–parasite relationship.