Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-23T20:54:05.617Z Has data issue: false hasContentIssue false

Workshop no. 6. Structure, function and evolution of kinetoplast DNA

Published online by Cambridge University Press:  19 November 2018

Extract

The kinetoplast DNA (kDNA) of kinetoplastidae was the first mitochondrial DNA (mtDNA) to be discovered, and with its unusual network structure, consisting of more than 104 catenated DNA circles, it is without equal in nature. Analysis of networks from various genera (reviewed by Borst & Hoeijmakers (1979a) and Englund (1980)) has shown that they always consist of two components: mini-circles and maxi-circles (see Table 1). The mini-circles are the major component and deterraine the size and sliape of networks. They vary in size between 1 and 3 kilo-base pairs (kb = 1000 base pairs (bp)), they are heterogeneous in sequence, their sequence evolves rapidly and their function is not yet known. The maxi-circles, on the other hand, are homogeneous in sequence, their sequence is conserved and they probably represent the counterpart of mtDNA in other organisms.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnot, D. E. & Barker, D. C. (1980). Biochemical identificationof cutaneous Leishmanias by analysis of kinetoplast Dna. Ii. Sequence homologies in Leishmania kDna. Molecular and Biochemical Parasitology (in the Press).Google Scholar
Barker, D. C. (1980). The ultrastructure of kinetoplast Dna with particular reference to the Interpretation of dark-field electron microscopy Imagesof isolated, purifiednetworks. Micron 11, 2162.Google Scholar
Bauman, J. (1980). Cytoohemical deteotion of specific micleic acid sequences. Development and application of in situ hybridisation methods for fluorescence microscopy. Ph.D. Thesis, Pasmans, ‘s-Gravenhage, The Netherlands.Google Scholar
Bauman, J. G. J., Wiegant, J., Borst, P. & Van Duijn, P. (1980). A new method for fluorescence microscopical localisation of specifie Dna sequences by in situ hybridization of fiuor ochrome-labelled Rna. Experimental Cell Research 128, 485490.Google Scholar
Borst, P. & Pase-Fowler, F. (1979). The maxi-circle of Trypanosoma brucei kinetoplast Dna. Biochimica et Biophysica Ada 565, 112.Google Scholar
Borst, P. & Hoeijmakers, J. H. J. (1979a). Kinetoplast Dna. Plasmid 2, 2040.Google Scholar
Borst, P. & Hoeijmakers, J. H. J. (19796). Structure and function of kinetoplast Dna of the African trypanosomos. In Extrachromosomal Dna : Icn-Ucla Symposia on Molecular and Cellular Biology, vol. 15 (ed. Cummings, D. U., Borst, P., Dawid, I. B., Weissman, S. M. and Fox, C. F.), pp. 515531. New York: Academic Press. Google Scholar
Borst, P., Hoeijmakers, J. H. J., Frasch, A. C. C, Snijders, A., Janssen, J. W. G. & Fase-Fowler, F. (1980a). The kinetoplast Dna of Trypanosoma brucei: Structure, evolution, transcription,mutants. In The Organization and Expression of the Mitochondrial Genome (ed. Kroon, A. M. and Saccone, C.), pp. 720. Amsterdam: North-Holland.Google Scholar
Borst, P., Fase-Fowler, F., Hoeijmakers, J. H. J. & Frasch, A. C. C. (19806). Variationa in maxi-circle and mini-eircle sequences in kinetoplast Dnas from different Trypanosoma brucei strains. Biochimica et Biophysica Ada (in the Press).Google Scholar
Borst, P., Fase-Fowler, F., Frasch, A. C. C, Hoeijmakers, J. H. J. & Weijers, P. J. (1980c). Characterizstionof Dna from Trypanosoma brucei and related trypanosomes by reetriction endonucleasedigestion. Molecular and Biochemical Parasitology 1, 221246.Google Scholar
Brunel, F., Davison, J., Merchez, M., Borst, P. & Weijers, P. J. (1980). The use of recombinant Dna techniquesin the analysis of Trypanosoma brucei kinetoplast Dna. In Dna-Recombination Interactionsand Repair (ed. Zadrazil, S. and Sponar, J.), pp.45-54. Oxford: Pergamon.Google Scholar
Challberg, S. S. & Enoluxd, P. T. (1980). Heterogeneity of minicircles inkinetoplast Dna of Leishmania tarentolae. Journal of Molecular Biology 138, 447472.Google Scholar
Chance, M. L. (1976). Dna relationships inthe genus Leishmania. In Biochemistry of Parasites and Host-Parasite Relationships (ed. Van den Bosscho, H.), pp. 229235. Amsterdam: North-Holland.Google Scholar
Chance, M. L., Peters, W. & Srchory, L. (1974). Biochemical taxonomy of Leishmania. I. Observationa onDna. Annales of Tropical Medicine and Parasitology 68, 307316.Google Scholar
Chen, K. K. & Doneison, J. E. (1980). Sequences of two kinetoplast Dna minicircles of Trypanosoma brucei. Proceediiujs of the National Academy of Sciences 77, 24452449.Google Scholar
Chexo, D. & Simpson, L. (1978). Isolation and characterization of kinetoplast Dna and Rna of Phytomonas davidi, Plasmid 1, 297315.Google Scholar
Cosorove, W. B. & Skeen, M. J. (1970). The cell cycle in Crithidia fasciculata. Temporal relationships betweensynthesis of Dna in the nueleus and in the kinetoplast. Journal of Protozoology 17, 172177.Google Scholar
Oonelson, J. E., Majiwa, P. A. O. & Williams, R. O. (1979). Kinetoplast Dna minieircles of Trypanosoma brucei sliare regions of sequence homology. Plasmid 2, 572588.Google Scholar
Englund, P. T. (1978). The replicationof kinetoplast Dna networks in Crithidia fasciculata. Cell 14, 157168.Google Scholar
Englund, P. T. (1979). Freo minicircles of kinetoplast Dna in Crithidia fasciculata. Journal of Biological Chemistry 254, 48954900.Google Scholar
Englund, P. T. (1980). Kinetoplast Dna. In Biochemistry and Physiology of Protozoa vol. 4, 2nd ed. (ed. Levandowskyand, M., Hutner, S. H.). New York: Academic Press. (In the Press.)Google Scholar
Fouts, D. L. & Wolstenholme, D. R. (1979). Evidence for a partial Rna transcriptof the small circular component of kinetoplast Dna of Crithidia acanthocephali. Nuclear Acids Research 6, 37853804.Google Scholar
Frasch, A. C. C, Hajduk, S. L., Hoeijmakers, J. H. J., Borst, P., Brunel, F. & Davison, J. (1980). The kinetoplast Dna of Trypanosoma equiperdum. Biochimica et Biophysica 607, 397410.Google Scholar
Hajduk, S. L. (1978). Infiuence of Dna complexing compounds on the kinetoplast of Trypanosomatids. In Progress in Molecular and Sub-Cellular Biology, vol. 6 (ed. Hahn, F. E.), pp. 158200. Berlin: Springer-Verlag.Google Scholar
Hamkalo, B. A. & Miller Jr., O. L. (1973). Electron microscopy of genetic activity. Annual Review of Biochemistry 42, 379396.Google Scholar
Hoeijmakers, J. H. J. & Borst, P. (1978). Rna from the insect trypanosome Crithidia luciliae contains transcripts of tho maxi-circle and not of the mini-circle component of kinetoplast Dna. Biochimica et Biophysica acta 521, 407411.Google Scholar
Hoeijmakers, J. H. J. & Weijers, P. J. (1980). The segregation of kinetoplast Dna networks in Trypanosoma brueei. Plasmid 4, 97116.Google Scholar
Leon, W., Frasch, A. C. C, Hoeijmakers, J. H. J., Fase-Fowler, F., Borst, P., Brunel, F. & Davison, J. (1980). Maxi-circles and mini-circles in kinetoplast Dna from Trypanosoma cruzi. Biochimica et Biophysica acta 607, 221231.Google Scholar
Marini, J. C., Miller, K. G. & Englund, P. T. (1980). Decatenation of kinetoplast Dna by topoisomerases. Journal of Biological Chemistry 255, 49764979.Google Scholar
Masuda, H., Simpson, L., Rosenblatt, H. & Simpson, A. M. (1979). Restriction map, partial cloning and localization of 9S and 12S kinetoplast Rna genes on the maxicircle component of the kinetoplast Dna of Leishmania tarentolae. Oene 6, 5173.Google Scholar
Morel, C, Chiari, E., Plessmann Camaroo, E., Mattei, D. M., Romanha, A. J. & Simpson, L. (1980). Strains and clones of Trypanosoma cruzi can be characterized by restriction endonuclease fingerprinting of kinetoplast Dna minieireles. Proceedings of the National Academy of Sciences (in the Press).Google Scholar
Newton, B. A. & Burnett, J. K. (1972). Dna of kinetoplastidao: A comparative study. In Comparative Biochemistry of Parasites (ed. Van den Bosscho, H.), pp. 185198. New York: Academic Press. Google Scholar
Opperdoes, F. R., Borst, P. & Derijke, D. (1976). Oligomycin sensitivityof the mitochondrial Atpase as a marker for fly transmissability and the presence of functional kinetoplast'Dna in African trypanosomes. Comparative Biochemistry and Physiology 55 B, 2530.Google Scholar
Riou, G. & Barrois, M. (1979). Restriction cleavage inap of kinetoplast Dna minicircles from Trypanosoma equiperdum. Biochemical and Biophysical Research Communications 90, 405409.Google Scholar
Riou, G. & Pautrizel, R. (1977). Isolation and characterization of circular Dna molecules, heterogeneous in size from a dyskinetoplastic strain of Trypanosoma equiperdum. Biochemical and Biophysical Research Communications 79, 10841091.Google Scholar
Riou, G. F. & Saucier, J.-M. (1979). Characterization of tho molecular componentsin kinetoplast-mitochondrial Dna of Trypanosoma equiperdum. Journal of Cell Biology 82, 248263.Google Scholar
Simpson, L. (1979). Isolation of maxicircle components of kinetoplast Dna from hemoflagellate protozoa. Proceedings of the National Academy of Sciences 76, 15851588.Google Scholar
Simpson, L. & Simpson, A. M. (1978). Kinetoplast Dna of Leishmania tarentolae. Cell 14, 169178.Google Scholar
Steinert, M., Van Assel, S. & Steinert, G. (1969). Study by autoradiographyof the effect* of ethidium bromido upon the synthesis of the nucleicacids of Crithidia lueilae. Experimental Cell Research 56, 6974.Google Scholar
Steinert, M., Van Assel, S., Borst, P., Mol, J. N. M., Kleisen, C. M. & Newton, B. A. (1973). Specific detection of kinetoplast Dna in cytological preparationsof trypanosomes by hybridization with complementary Rna. Experimental Cell Research 76, 175185.Google Scholar
Steinert, M., Van Assel, S., Borst, P. & Newton, B. A. (1976). Evolution of kinetoplast Dna. In The Qenetic Function of Mitochondrial Dna (ed. Saccone, C. and Kroon, A. M.), pp. 7181. Amsterdam: North-Holland.Google Scholar
Steinert, M. & Van Assel, S. (1980). Sequence heterogeneity in kinetoplast Dna: Reassociation kinetics. Plasmid 3, 717.Google Scholar
Vickerman, K. (1977). Dna throughout the single mitochondrionof a kinetoplastid flagellat«:Observations on the ultra-structure of Cryptobia vaginalis (Hesse, 1910). Journal of Protozoology 24, 221233.Google Scholar
Vickermant, K. & Preston, T. M. (1976). Comparative cell biology of the kinetoplastid flagellates. In Biology of the Kinetoplastida, vol. 1 (ed. Lumsden, W. H. R. and Evans, D. A.), pp. 35130. London: Academic Press.Google Scholar