Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-23T21:09:51.726Z Has data issue: false hasContentIssue false

Workshop no. 1. Alternate metabolic pathways in protozoan energy metabolism

Published online by Cambridge University Press:  19 November 2018

Extract

The purpose of this workshop was to collect together colleagues investigating the intermediary metabolism of protozoa, with a view to discussing those pathways involved in energy metabolism and the production of ATP and other high-energy compounds, together with the factors affecting energy balance. The aspects of energy metabolism chosen for discussion comprised the metabolic pathways ranging from the strictly anaerobic to highly oxidative; subcellular compartmentation of these pathways within the protozoa; the functional role of these pathways including a consideration of aero-tolerance; and the use of inhibitors as biochemical probes and potential chemotherapeuticagents. Hopefully this approach has produced a broad 'over-view' of important areas of protozoan energy metabolism which will enable both the specialist and non-specialist to appreciate the similarities and differences between the metabolic behaviour of a range of protozoa.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abou Akkada, A. R. & Howard, B. H. (1960). The biochemistry of rumen protozoa. 3. Tho carbohydrate metabolism of Entodinium. Biochemicnl Journal 76, 445—451.Google Scholar
Band, R. N. & Cirrito, H. (1979). Growth response of axenic Entamoeba histolytica to hydrogen, carbon dioxide and oxygen. Journal of Protozoology 26, 282286.Google Scholar
Beinert, H. (1963). Flavin enzymes. In The Enzymes, vol. 2, 2nd ed. (ed. Boyer, P. D., Lardy, H. and Myrbäch, K.), p. 339. New York: Academic Press.Google Scholar
Berens, R. L., Deutsch-Kino, L. C. & Mark, J. J. (1980). Leishmunia donovani and L. braziliensis: hexokinase, glucose-6-phosphate dehydrogenaso and pentoso phosphato shunt activity. Experimental Parasitology 99, 18.Google Scholar
Berens, R. L. & Marr, J. J. (1977). Phosphofructokinase of Leishmania donovani and L. braziliensis and its role in glycolysis. Journal of Protozoology 24, 340344.Google Scholar
Bloch, K. & Vance, D. (1977). Control mechanisms in the synthesis of saturated fatty acid. Annual Reviews in Biochemistry 46, 263298.Google Scholar
Bohringer, S. & Hecker, H. (1975). Quantitative ultrastructural investigations on tho life cycle of Trypanosoma brucei: a morphometric analysis. Journal of Protozoology 22, 463467.Google Scholar
Bowman, I. B. R. & Fairlamb, A. H. (1976). L-Glycerol-3-phosphate oxidase in Trypanosoma brucei and the effect of suramin. In Biochemistry of Parasites and Host Relationships (ed. Van den Bossche, H.), pp. 501507. Amsterdam: North-Holland Press.Google Scholar
Bowman, I. B. R. & Flynn, I. W. (1976). Oxidative metabolism of trypanosomes. In Biology of the Kinetoplastida, vol. 1 (ed. Lumsden, W. H. R. and Evans, D. A.), pp. 435 476. New York, London: Academic Press.Google Scholar
Bowman, I. B. R., Flynn, I. W., Hammond, D. J. & Oduro, K. K. (1977). Regulation of aerobic and anaerobic glycolysis in Trypanosoma brucei. Proceedings of the Fifth International Congress of Protozoology (ed. Hutner, S. H.), p. 220. New York: The Print Shop.Google Scholar
Brun, R. & Krassner, S. M. (1976). Quantitative ultrastructural investigations of mitochondrial development in Leishmania donovani during transformation. Journal of Protozoology 23, 493497.Google Scholar
Cerkasov, J., Cerkasovova, A. & Kulda, J. (1980). Carbohydrate metabolism of Trichomonas foetus with particular respect to enzyme reactions occuring in hydrogenosomes. In Industrial und Clinical Enzymology (ed. Vitale, L. and Simeon, V.). Federation of European Biochemical Society Meeting Proceedings, vol. 61, pp. 257275. Oxford, New York: Pergamon Press.Google Scholar
Cerkasovova, A. (1970). Energy-producing metabolism of Tritrichomonas foetus. I. Evidence for control of intensity and the contribution of aerobiosis to total energy production. Experimental Parasitology 27, 165178.Google Scholar
Cerkasovova, A. Cerkasov, J., Kulda, J. & Demes, P. (1980). Metronidazole action on Tritrichomonas foetus: enzyme activities in the strains of a different resistance to the drug. The Host-invader Interplay. In The Third International Symposium on the Physiology of Parasites and Host-parasite Relationships (ed. Van den Bossche, H.), pp. 669672. Amsterdam: Elsevier/North Holland Biomedical Press. Google Scholar
Clarkson, A. B. Jr. & Brohn, F. H. (1976). Trypanosomiasis: an approach to chemotherapy by the inhibition of carbohydrate metabolism. Science, N.Y. 194,204—206.Google Scholar
Coleman, G. S. (1964). The metabolism of 14C-glycine and 14C-bicarbonate by washed suspensions of the rumen ciliate Entodinium caudatum. Journal of General Microbiology 35, 91103.Google Scholar
Coleman, G. S. (1967). The metabolism of free amino acids by washed suspensions of the rumen ciliate Entodinium caudatum. Journal of General Microbiology 47, 433447.Google Scholar
Coleman, G. S. (1968). The metabolism of bacterial nucleie acid and of free component of nucleic acid by tho rumen ciliate Entodinium caudatum. Journal of General Microbiology 54, 8396.Google Scholar
Coleman, G. S. (1969). The metabolism of starch, maitose, glucose and some other sugars by the rumen ciliate Entodinium caudatum. Journal of General Microbiology 57, 303332.Google Scholar
Coleman, G. S. (1972). The metabolism of starch, glucose, amino acids, purines, pyrimidines and bacteria by the rumen ciliate Entodinium caudatum. Journal of General Microbiology 71, 117131.Google Scholar
Coleman, G. S. (1975). The role of bacteria in the metabolism of rumen entodiniomorphid protozoa. In Symbiosis (ed. Jennings, D. H. and Lee, D. L.), pp. 533558. Cambridge: Cambridge University Press.Google Scholar
Coleman, G. S. (1978a). Rumen Entodiniomorphid Protozoa. In Methods of Cultivating Parasites in vitro (ed. Taylor, A. E. R. and Baker, J. R.), pp. 3954. London: Academio Press. Google Scholar
Coleman, G. S. (1978b). The metabolism of cellulose, glucose and starch by the rumen ciliate protozoon Eudiplodinium maggi. Journal of General Microbiology 107, 359360. Google Scholar
Coleman, G. S. (1978c). Methodsfor the study of the metabolism of rumen ciliate protozoa and their closely associated bacteria. In Techniques for the Study of Mixed Populations (ed. Lovelock, D. W. and Davies, R.), pp. 143163. London: Academic Press. Google Scholar
Coleman, G. S. & Hall, F. J. (1969). Electron microscopy of the rumen ciliate Entodinium caudatum, with Special reference to the engulfment of bacteria and other particular matter. Tissue & Cell 1, 607618.Google Scholar
Coleman, G. S. & Laurie, J. I. (1974). The metabolism of starch, glucose, amino aeids, purines, pyrimidines and bacteria by three Epidinium spp. isolated from the rumen. Journal of General Microbiology 85, 244256.Google Scholar
Coleman, G. S. & Laurie, J. I. (1976). The uptake and metabolism of glucose, maltose and starch by therumen ciliate Epidinium ecaudatum caudatum. Journal of General Microbiology 95, 364374.Google Scholar
Coleman, G. S. & Sandford, D. C. (1979). Tho uptake and utilization of bacteria, amino acids and nucleic acid components by the rumen ciliato Eudiplodinium maggi. Journal of Applied Bacteriology 47, 409419.Google Scholar
Coombs, G. H. (1978). Studies on Nadh dehydrogenase of Trichomonas vaginalis. Journal of Protozoology 25, 12B.Google Scholar
Corliss, J. O. (1979). The Ciliated Protozoa. Oxford: Pergamon Press. Google Scholar
Costa, N. D. & Snoswell, A. M. (1975). Acetyl-coenzyme A hydrolase, an artifact-conversion of acetyl-coenzymo A into acetate by combined action of carnitine acetyltransferase and acetylcarnitino hydrolase. Biochemical Journal 152, 167177.Google Scholar
Cross, G. A. M., Klein, R. A. & Linstead, D. J. (1975). Utilization of amino acids by Trypanosoma brucei in culture. Parasitology 71, 311326.Google Scholar
Dixon, H. G. P. (1966). Blood platelets as a source of enzyme activity in washed trypanosome suspensions. Nature, London 210, 428.Google Scholar
Dixon, H. G. P. (1967). Some aspects of the chemical composition and metabolism of the Trypanosomatidae. Ph.D. Thesis, University of London.Google Scholar
Dixon, H. & Williamson, J. (1970). The lipid composition of blood and culture forms of Trypanosoma lewisi and Trypanosoma rhodesiense compared with that of their environment. Comparative Biochemistry and Physiology 33 B, 111128.Google Scholar
Dixon, H., Ginger, C. D. & Williamson, J. (1971). Lipid metabolism of blood and culture forms of Trypanosoma lewisi and Trypanosoma rhodesiense. Comparative Biochemistry and Physiology 39 B, 247266.Google Scholar
Docampo, R., de Boiso, J. F. & Stoppani, A. O. M. (1978). Tricarboxylic acid cycle Operation at the kinetoplast-mitochondrion complex of Trypanoscma cruzi. Biochimica et Biophysica Acta 502, 466476.Google Scholar
Docampo, R., Cruz, F. S., Leon, W. & Schmtjnis, G. A. (1979). Acetate oxidation by bloodstream forms of Trypanosoma cruzi. Journal of Protozoclogy 26, 301303.Google Scholar
Fairlamb, A. H. & Bowman, I. B. R. (1975). Studies of glycerophosphate oxidase of Trypanosoma brucei. Transactions of the Royal Society of Tropical Medicine and Hygiene 69, 268.Google Scholar
Fairlamb, A. H. & Bowman, I. B. R. (1977). Inhibitor studies of particulate sn-glycerol-3-pliosphate oxidase from Trypanosoma brucei. International Journal of Biochemislry 8, 669675.Google Scholar
Fairlamb, A. H. & Bowman, I. B. R. (1980). Uptake of the trypanocidal drug suramin by blooclstream forms of Trypanosoma brucei and its cffect on rcspiration and growth in vivo. Molecular and Biochemical Parasitology 1, 315333.Google Scholar
Fairlamb, A. H., Oduro, K. K. & Bowman, I. B. R. (1979). Aotion of the trypanocidal drug suramin on the enzymes of aerobic glycolysis of Trypanosoma brucei in vivo. Federation of European Biochemical Society Special Meeting on Enzymes, Dubrovnik, abstract S4-10.Google Scholar
Flynn, I. W. & Bowman, I. B. R. (1973). The metabolism of carbohydrates by pleomorphic African trypanosomes. Comparative Biochemistry and Physiology 45 B, 2542. Google Scholar
Flynn, I. W. & Bowman, I. B. R. (1980). Purification and characterization of pyruvate kinase from Trypanosoma brucei. Archives of Biochemislry and Biophysics 200, 401409.Google Scholar
Fridovich, I. (1976). Oxygen radicals, hydrogen peroxide and oxygen toxicity. In Free Radicals in Biology, vol. 1 (ed. Pryor, W. A.), pp. 239277. New York, London: Academic Press. Google Scholar
Fulton, J. D. & Joyner, L. P. (1949). Studies on protozoans. 1. The metabolism of the Leishman-Donovan bodies and flagellates of Leishmania donovani in culture. Transactions of the Royal Society of Tropical Medicine and Hygiene 43, 273286.Google Scholar
Gero, A. M. & Coombs, G. H. (1981). Pyrimidine biosynthetic enzyrnes in Leishmania mexicana mexicana and other parasitic protozoa. Parasitology (in the Press). Google Scholar
Gobert, N. Chaigneau, M. & Savel, J. (1971). Etüde des gaz liberes au course de la eulture en anaerobiose de Triehomonas vaginalis. Compte Rendu des Se'ances de la Societe de Biologie (Paris) 165, 276282.Google Scholar
Gorell, T. E. (1980). Iron enhances H2 production by Triehomonas vaginalis. Journal of Protozoology 27, 17A.Google Scholar
Grant, P. T. & Sargent, J. R. (1960). Properties of the L-a-glycerophosphateoxidase and its role in respiration of Trypanosoma rhodesiense. Biochemical Journal 76, 229237.Google Scholar
Hammond, D. J. & Bowman, I. B. R. (1980). Trypanosoma brucei: the effect of glycerol on the anaerobic metabolism of glucose. Molecular and Biochemüal Parasitology 2, 6370.Google Scholar
Hammond, D. J. & Bowman, I. B. R. (19806). Studies on glycerokinase and its role in Atp synthesis in Trypanosoma brucei. Molecular and Biochemical Parasitology 2, 7791.Google Scholar
Hart, D. T., Vickerman, K. & Coombs, G. H. (1981). A quick, simple method for purifying Leishmania mexicana amastigotes in large numbers. Parasitology (in the Press).Google Scholar
Hill, G. C. (1976). Characterization of electron transport Systems present during the lifeoyclo of Afriean trypanosomes. In Biochemistry of Parasites and Host-Parasite Relationships (ed. Van den Bossche, H.), pp. 3150. Amsterdam: North-Holland Press. Google Scholar
Hochachka, P. W. (1980). Living without oxygen. Cambridge: Harvard University Press.Google Scholar
HÖNigberg, B. M. (1978). Trichomonads of importance in human medicine.In Parasitic Prolozoa, vol. 2 (ed. Kreier, J. P.), pp. 276424. New York, London: Academic Press.Google Scholar
Hunoate, R. E. (1975). The rumen mierobial ecosystem. Annual Review of Ecology 6, 3966.Google Scholar
Klein, R. A. (1979). Carnitine uptako by Trypanosoma brucei. Parasitology 79, xlv.Google Scholar
Klein, R. A. & Linstead, D. J. (1976). Threonine as a preferred souroe of 2-oarbon units for lipid synthesis in Trypanosoma brucei. Biochemical Society Transactions 4, 4850.Google Scholar
Klein, R. A., Linstead, D. J. & Wheeler, M. V. (1975). Carbon dioxide fixation in trypanosomatids. Parasitology 71, 93107.Google Scholar
Klein, R. A., Miller, P. G. G. & Linstead, D. J. (1976). Tho enzymatic hydrolysiaof acetylcoenzyme A by trypanosomatid fiagellatos. Biochemical Society Transadions 4, 285287.Google Scholar
Korn, E. D., Greenblatt, C. L. & Lees, A. M. (1965). Synthesis of unsaturatod fatty aeid in the slime mold Physarum polycephalum and the zooflagellates Leishmania tarentolae, Trypanonoma lewisi, and Crilhidia spp.: a comparative study. Journal of Lipid Research 6, 4350.Google Scholar
Krassner, S.M. & Flory, B. (1972). Proline motabolism in Leishmania donovani promaatigotes. Journal of Protozoology 19, 682685.Google Scholar
Krassner, S. M. & Flory, B. (1977). Physiologioal interactions between L-prolino anil Dglucoso in Leishmania tarentolae, L. donovani and Trypanosoma scelopori culture forms. Ada Tropica 34, 157166.Google Scholar
Kronick, P. & Hill, G. C. (1974). Evidence for tho funetioning of cytochrornoo in the Kinetoplastida. Biochimica et Biophysica Ada 368, 173180.Google Scholar
Law, S. S. & Makkada, A. J. (1979). Transport of L-proline and its regulation in Leishmania tropica promastigotes. Journal of Protozoology 26, 295301.Google Scholar
Lindmark, D. G., MÜLler, M. & Shio, H. (1975). Hydrogonosomes in Triehomonas vaginalis. Journal of Parasitology 63, 552554.Google Scholar
Linstead, D. J. (1978). Xadph: aeeeptor oxidoreduetase from Triehomonas vaginalis. Journal of Protozoology 25, 13.Google Scholar
Linstead, D. J., Klein, R. A. & Cross, G. A. M. (1977). Threonino metabolism in Trypanosomu brucei. Journal of General Microbiology 101, 243251.Google Scholar
Mack, S. R. & MÜLler, M. (1978). Effeet of oxygen and carbon dioxide on the growth of Trichomonas vaginalis and Tritrichomas foetus. Journal of Parasitology 64, 927929.Google Scholar
Mack, S. R. & MÜLler, M. (1980). End products of carbohydrate metabolism in Trichomonas vaginalis. Comparative Biochemistry and Physiology 67B, 213216.Google Scholar
Marczak, R. (1980). Nadh: methyl viologen oxidoreductase activity in Tritrichomonas foetus. Journal of Protozoology 27, 17.Google Scholar
Marr, A., & Berens, R. L. (1977). Regulation of aerobie fermentation in protozoans. Vi. Comparative biochemistry of pathogenic and non-pathogenic protozoans. Ada Tropica 34, 143157.Google Scholar
Martin, E. & Mukkada, A. J. (1979). Respiratory chain components of Leishmania tropica promastigotes. Journal of Protozoology 26, 138—142.Google Scholar
Martin, E., Simon, M. V., Schaefer, F. S. & Mukkada, A. J. (1976). Enzymes of carbohydrate metabolism in four human species of Leishmania: a comparative survey. Journal of Protozoology 23, 600607.Google Scholar
Miller, P. G. G. (1980). The intermediary metabolism of Afrioan trypanosomes. Ph.D. thesis, University of Cambridge.Google Scholar
Miller, P. G. G. & Klein, R. A. (1980). Effects of oligomycin on glueoso utilization and calcium transport in African trypanosomes. Journal of General Microbiology 116, 391396.Google Scholar
Morris, J. G. (1975). The physiology of obligate anaerobiosis. Advances in Microbial Physiology 12, 169236.Google Scholar
Mukkada, A. J. (1977). Tricarboxylic acid and glyoxylate cycles in Leishmania. Acta Tropica 34, 167175.Google Scholar
Mukkada, A. J., Schaefer, F. W., Simon, M. V. & Neu, C. (1974). Delayed in vitro utilization of glucose by Leishmania tropica promastigotes. Journal of Protozoology 21, 393397.Google Scholar
MÜLler, M. (1980). The hydrogenosome. Symposia of the Society of General Microbiology 30, 127142.Google Scholar
MÜLler, M. & Lindmark, D. G. (1978). Respiration of hydrogenosomes in Tritrichomonas foetus. Ii. Effeet of CoA on pyruvate metabolism. Journal of Biological Chemistry 253, 12151218.Google Scholar
Njoou, R. M., Whittaker, C. J. & Hill, G. C. (1980). Evidence for a branched electron transport chain in Trypanosoma brueei. Molecular and Biochemical Parasitology 1, 1329.Google Scholar
Oduro, K. K. (1977). Trypanosoma brueei: subcellular distribution and organization of the enzymes of glycolysis. Ph.D. thesis, University of Edinburgh.Google Scholar
Oduro, K. K., Bowman, I. B. R. & Flynn, I.W. (1980a). Trypanosoma brueei: preparation and properties of a multi-enzyme complex catalyzing part of the glycolytic pathway. Experimental Parasilology 50, 240250.Google Scholar
Oduro, K. K., Flynn, I.W. & Bowman, I. B. R. (19806). Trypanosoma brueei: activities and subcellular distribution of glycolytic enzymes from differently disrupted cells. Experimental Parasitology 50, 123135.Google Scholar
Ohnishi, T., Lloyd, D., Lindmark, D. G. & Muller, M. (1980). Respiration of Tritrichomonas foetus: components detected in hydrogenosomea and in intact cells by electron paramagnetic resonanco spectroscopy. Molecular and Biochemical Parasitology 2, 3950.Google Scholar
Opperdoes, F. R. & Borst, P. (1977). Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brueei: tho glycosome. Federation of European Biochemical Socielies' Letters 80, 360364.Google Scholar
Opperdoes, F. R., Borst, P. & Fonck, K. (1976). The potential use of inhibitors of glycerol-3-phosphate oxidase for chemotherapy of African trypanosomiasis. Federalion of European Biochemical Societies’ Leiters 62, 169172.Google Scholar
Opperdoes, F. R., Borst, P. & De Rijke, D. (1976). Oligomyein-sensitivity of the mitochondrial Atpase as a marker for fly transmissibility and the presence of functional kinetoplast Dna in African trypanosomes. Comparative Biochemistry and Physiology 55B, 2530.Google Scholar
Opperdoes, F. R., Borst, P. & Spits, H. (1977a). Particlebound enzymes in the bloodstream form of Trypanosoma brueei. European Journal of Biochemistry 76, 2128.Google Scholar
Oppehdoes, F. R., Borst, P., Bakker, S. & Leene, W. (19776). Localization of glycerol-3-phosphate oxidase in the mitochondrion and particulato Nad+-linked glycerol-3-phosphate dehydrogenase in tho microbodies of the bloodstream form of Trypanosoma brueei. European Journal of Biochemistry 76, 2939.Google Scholar
Oxford, A. E. (1951). The conversion of certain soluble sugars to a glucosan by holotrich ciliates in th rumen of sheep. Journal of General Microbiology 5, 8390.Google Scholar
Oxford, S. R. A. & Van Hoven, W. (1977). Carbohydrate fermentation by the rumen ciliate. Isotricha Prostoma. Protistologica 13, 549556.Google Scholar
Racker, E. (1977). Why do tumour colls have a high aerobie glyoolysis? Journal of Cell Physiology 89, 697700.Google Scholar
Ray, S. K. & Cross, G. A. M. (1972). Branched electron transport chain in Trypanosoma mega. Nature (New Biol.) 237, 174175.Google Scholar
Rogerson, G. W. & Gutteridge, W. E. (1979). Oxidative metabolism in mammalian and culture forms of Trypanosoma cruzi. International Journal of Biochemistry 10, 10191023.Google Scholar
Rogerson, G. W. & Gutteridge, W. E. (1980). Catabolic metabolism in Trypanosoma cruzi. International Journal for Parasitology 10, 131—135.Google Scholar
Rudziska, M. A., D'Alesandeo, P.A. & Trager, V. (1964). The fine structure of Leishmania donovani and the role of the kinetoplast in the leishmania-leptomonad transformation. Journal of Protozoology 11, 166191.Google Scholar
Ryley, J. F. (1956). Studies on the metabolism of the protozoa. 7. Comparative carboliydrate metabolism of eleven species of trypanosome. Biochemical Journal 62, 215222.Google Scholar
Saz, H. J. (1972). Comparative biochemistry of carbohydrates in nematodes and cestodes. In Comparative Biochemistry of Parasites (ed. Van den Bossche, H.), pp. 3347. New York, London: Academic Press. Google Scholar
Schaefer, F. W. & Mukkada, A. J. (1976). Specificity of the glucose transport System in Leishmania tropica promastigotes. Journal cf Protozoology 23, 446—449.Google Scholar
Simon, M.W. & Mukkada, A. J. (1977). Leishmania tropica. Regulation and spccificity of tho methionine transport System in promastigotes. Experimental Parasitology 42, 97105.Google Scholar
Simon', F. W., Mabtin, E. & Mukkada, A. J. (1978). Evidenoe for a functional glyoxylate cycle in the Leishmaniae. Journal of Bacttriology 135, 895899.Google Scholar
Simpson, L. (1968). The leishmania-leptomonad transformation of Leishmania donovani: nutritional requirements, respiration changes and antigenic changes. Journal of Protozoology 15, 201207.Google Scholar
Steiger, R. F. & Meshnick, S. R. (1977). Amino aoid and glucose utilization of Leishmania donovani and L. braziliensis. Transactions of the Royal Society of Tropical Medicine and Hygiene 71, 441443.Google Scholar
Tanabe, M. (1979). Trichomonas vaginalis: Nadh oxidase activity. Experimental Parasitology 48, 135143.Google Scholar
Taylor, M. B., Berghausen, H., Heyworth, P., Messenger, N., Rees, L. J. & Gutteridge, W. (1980). Sucellular localization of some glycolytic enzymes in parasitic flagellato protozoa. International Journal of Biochemistry 11, 117120.Google Scholar
Visser, N. & Opperdoes, F. R. (1980). Glycolysis in Trypanosoma brucei. European Journal of Biochemistry 103, 623632.Google Scholar
Van Hoven, W. & Prins, R. A. (1977). Carbohydrate fermentation by tho rumen ciliato. Dasylricha ruminantium. Protistologica 13, 599606.Google Scholar
Voorheis, H. P. (1974). The structure and metabolism of fatty acid in Trypanosoma brucei. Ph.D. thesis, University of Cambridge.Google Scholar
Voorheis, H. P. (1980). Fatty acid uptake by bloodstream forms of Trypanosoma brucei and othor species of the Kinetoplast ida. Molecvlar and Biochemical Parasitology 1, 177186.Google Scholar
Weinbach, E. C, Clagoett, C. E., Takeuchi, T. & Diamond, L. S. (1978). Biological oxidations and flavoprotein catalysis in Entamoeba histolytica. Archivos de Invesligacion Medien (Mexico) 9, 8998.Google Scholar
Weinbach, E. C, Harlow, D. R., Claooett, C. E. & Diamond, L. S. (1977). Entamoeba hütolylica: diaphorase activities. Experimental Parasitology 41, 186197.Google Scholar
Weinbach, E. C, Takeuchi, T. & Claggett, C. E. (1979). Respiratory cliain of Entamoeba histolytica, a eukaryote lacking mitochondria. Federalion Proceedings 38, 639.Google Scholar
Williamson, J. (1970). Review of chemotherapeutic and chemoprophylactic agents. In The African Trypanosomes (ed. Mulligan, H. W.), pp. 125221. London: Allen & Unwin.Google Scholar