Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T07:04:58.186Z Has data issue: false hasContentIssue false

Within-host dynamics of a microsporidium with horizontal and vertical transmission: Octosporea bayeri in Daphnia magna

Published online by Cambridge University Press:  19 January 2004

D. B. VIZOSO
Affiliation:
Département de Biologie, Unité d'Ecologie et Evolution, Université de Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
D. EBERT
Affiliation:
Département de Biologie, Unité d'Ecologie et Evolution, Université de Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland

Abstract

The fresh-water crustacean Daphnia magna may acquire an infection with the microsporidium Octosporea bayeri either by ingesting spores from the water (horizontally), or directly from its mother (vertically). Due to differences in the time and mechanisms of transmission, horizontal and vertical infections may lead to differences in the growth of the parasite within the host. This may influence parasite virulence, transmission to new hosts, and, consequently, epidemiology and evolution. Here we describe the within-host dynamics of 3 spore-types of O.bayeri from infections that were acquired either horizontally or vertically. In all treatments the number of spores increased exponentially until spore density reached a plateau, suggesting density-dependent within-host growth. The spore types seen differ in their growth dynamics, suggesting different roles in the parasite life-cycle. Horizontally-infected hosts harboured significantly fewer spores than vertically-infected hosts. Further, host survival was affected by infection route, with mortality being higher in horizontal infections than in vertical infections. Our results suggest that different routes of infection have an immediate effect on within-host parasite growth and thus on parasite fitness and epidemiology.

Type
Research Article
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AGNEW, P. & KOELLA, J. C. (1997). Virulence, parasite mode of transmission, and host fluctuating asymmetry. Proceedings of the Royal Society of London, Series B 264, 915.CrossRefGoogle Scholar
ANDERSON, R. M. (1998). Complex dynamic behaviours in the interaction between parasite populations and the host's immune system. International Journal for Parasitology 28, 551566.CrossRefGoogle Scholar
ANTIA, R., LEVIN, B. R. & MAY, R. M. (1994). Within-host population-dynamics and the evolution and maintenance of microparasite virulence. American Naturalist 144, 457472.CrossRefGoogle Scholar
BECNEL, J. J. & ANDREADIS, T. G. (1999). Microsporidia in insects. In The Microsporidia and Microsporidiosis (ed. Wittner, M. & Weiss, L. M.), pp. 447501. American Society for Microbiology, Washington, D.C.CrossRef
CARIUS, H. J., LITTLE, T. J. & EBERT, D. (2001). Genetic variation in a host-parasite association: Potential for coevolution and frequency-dependent selection. Evolution 55, 11361145.CrossRefGoogle Scholar
DUNN, A. M. & SMITH, J. E. (2001). Microsporidian life cycles and diversity: the relationship between virulence and transmission. Microbes and Infection 3, 381388.CrossRefGoogle Scholar
DUNN, A. M., TERRY, R. S. & SMITH, J. E. (2001). Transovarial transmission in the microsporidia. Advances in Parasitology 48, 57100.CrossRefGoogle Scholar
DUNN, A. M., TERRY, R. S. & TANEYHILL, D. E. (1998). Within-host transmission strategies of transovarial, feminizing parasites of Gammarus duebeni. Parasitology 117, 2130.CrossRefGoogle Scholar
EBERT, D. (1994). Virulence and local adaptation of a horizontally transmitted parasite. Science 265, 10841086.CrossRefGoogle Scholar
EBERT, D., HOTTINGER, J. W. & PAJUNEN, V. I. (2001). Temporal and spatial dynamics of parasite richness in a Daphnia metapopulation. Ecology 82, 34173434.CrossRefGoogle Scholar
EBERT, D., LIPSITCH, M. & MANGIN, K. L. (2000). The effect of parasites on host population density and extinction: Experimental epidemiology with Daphnia and six microparasites. American Naturalist 156, 459477.CrossRefGoogle Scholar
EBERT, D., PAYNE, R. J. H. & WEISSER, W. W. (1997). The epidemiology of parasitic diseases in Daphnia. In Vertical Food Web Interactions: Evolutionary Patterns and Driving Forces (ed. Dettner, K., Bauer, G. & Völkl, W.), pp. 91111. Springer, Heidelberg.CrossRef
EBERT, D., ZSCHOKKE-ROHRINGER, C. D. & CARIUS, H. J. (1998). Within- and between-population variation for resistance of Daphnia magna to the bacterial endoparasite Pasteuria ramosa. Proceedings of the Royal Society of London, Series B 265, 21272134.CrossRefGoogle Scholar
FRANK, S. A. (1996). Models of parasite virulence. Quarterly Review of Biology 71, 3778.CrossRefGoogle Scholar
FRANK, S. A. (2000). Within-host spatial dynamics of viruses and defective interfering particles. Journal of Theoretical Biology 206, 279290.CrossRefGoogle Scholar
FRIXIONE, E., RUIZ, L., CERBON, J. & UNDEEN, A. H. (1997). Germination of Nosema algerae (Microspora) spores: Conditional inhibition by D2O, ethanol and Hg2+ suggests dependence of water influx upon membrane hydration and specific transmembrane pathways. Journal of Eukaryotic Microbiology 44, 109116.CrossRefGoogle Scholar
GALVANI, A. P. (2003). Epidemiology meets evolutionary ecology. Trends in Ecology and Evolution 18, 132139.CrossRefGoogle Scholar
GANUSOV, V. V., BERGSTROM, C. T. & ANTIA, R. (2002). Within-host population dynamics and the evolution of microparasites in a heterogeneous host population. Evolution 56, 213223.CrossRefGoogle Scholar
GREEN, J. (1974). Parasites and epibionts of Cladocera. Transactions of the Zoological Society of London 32, 417515.CrossRefGoogle Scholar
HETZEL, C. & ANDERSON, R. M. (1996). The within-host cellular dynamics of bloodstage malaria: theoretical and experimental studies. Parasitology 113, 2538.CrossRefGoogle Scholar
HOSHEN, M. B., HEINRICH, R., STEIN, W. D. & GINSBURG, H. (2000). Mathematical modelling of the within-host dynamics of Plasmodium falciparum. Parasitology 121, 227235.CrossRefGoogle Scholar
IWANO, H. & KURTTI, T. J. (1995). Identification and isolation of dimorphic spores from Nosema furnacalis (Microspora, Nosematidae). Journal of Invertebrate Pathology 65, 230236.CrossRefGoogle Scholar
JAENIKE, J. (2000). Effective vertical transmission of a Drosophila-parasitic nematode: mechanism and consequences. Ecological Entomology 25, 395402.CrossRefGoogle Scholar
KLEINBAUM, D. G., KUPPER, L. L., MULLER, K. E. & NIZAM, A. (1998). Applied Regression Analysis and other Multivariate Methods. Duxbury Press, Pacific Grove CA.
KLÜTTGEN, B., DÜLMER, U., ENGELS, M. & RATTE, H. T. (1994). ADaM, an artificial freshwater for the culture of zooplankton. Water Research 28, 743746.CrossRefGoogle Scholar
KOVER, P. X. & CLAY, K. (1998). Trade-off between virulence and vertical transmission and the maintenance of a virulent plant pathogen. American Naturalist 152, 165175.Google Scholar
KURTTI, T. J., ROSS, S. E., LIU, Y. & MUNDERLOH, U. G. (1994). In-vitro developmental biology and spore production in Nosema furnacalis (Microspora, Nosematidae). Journal of Invertebrate Pathology 63, 188196.CrossRefGoogle Scholar
LITTLE, T. J. & EBERT, D. (2000). Sex, linkage disequilibrium and patterns of parasitism in three species of cyclically parthenogenetic Daphnia (Cladocera: Crustacea). Heredity 85, 257265.CrossRefGoogle Scholar
SAS INSTITUTE INC. (2000). JMP 4.
SOKAL, R. R. & ROHLF, F. J. (1998). Biometry, 3rd Edn. W. H. Freeman, New York.
SOLTER, L. F., MADDOX, J. V. & ONSTAD, D. W. (1991). Transmission of Nosema pyrausta in adult european corn borers. Journal of Invertebrate Pathology 57, 220226.CrossRefGoogle Scholar
STIRNADEL, H. A. & EBERT, D. (1997). Prevalence, host specificity and impact of host fecundity of microparasites and epibionts in three sympatric Daphnia species. Journal of Animal Ecology 66, 212222.CrossRefGoogle Scholar
SWEENEY, A. W., DOGGETT, S. L. & GULLICK, G. (1989). Laboratory experiments on infection rates of Amblyospora dyxenoides (Microsporida: Amblyosporidae) in the mosquito Culex annulirostris. Journal of Invertebrate Pathology 53, 8592.CrossRefGoogle Scholar
TERRY, R. S., DUNN, A. M. & SMITH, J. E. (1997). Cellular distribution of a feminizing microsporidian parasite: a strategy for transovarial transmission. Parasitology 115, 157163.CrossRefGoogle Scholar
ZAR, J. H. (1999). Biostatistical Analysis, 4th Edn. Prentice Hall, New Jersey.