Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-04T19:16:49.319Z Has data issue: false hasContentIssue false

The use of biotin-labelled, synthetic DNA oligomers for the detection and identification of Plasmodium falciparum

Published online by Cambridge University Press:  06 April 2009

M. A. Hughes
Affiliation:
Wolfson Unit of Molecular Genetics, Pembroke Place, Liverpool L3 SQA
M. Hommel
Affiliation:
Department of Tropical Medicine and Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 SQA
J. M. Crampton
Affiliation:
Wolfson Unit of Molecular Genetics, Pembroke Place, Liverpool L3 SQA

Summary

An oligonucleotide mixture based on the 21 base pair repeat sequence of Plasmodium falciparum was covalently coupled to biotin and used as a probe to detect P. falciparum DNA. The limit of detection was 10 ng. This method was further developed as a fingerprint assay for parasite strain typing. After restrictian enzyme digestion, blotting and hybridization, distinct banding patterns were obtained for the strains tested and these were reproducible. In addition, discrete differences were found between PLF-3 S + /S-strains which may implicate genetic reorganization in the switching mechanism which occurs when parasites are passed from an intact to a splenectomized animal.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aslund, L., Franzen, L., Westin, G., Persson, T., Wigzell, H. & Petterson, U. (1985). High reiterated non-coding sequence in the genome of Plasmodium falciparum is composed of 21 base pair tandem repeats. Journal of Molecular Biology 185, 509–26.Google Scholar
Barker, R. H., Suebsaeng, L., Rooney, W., Alecrim, G. C., Dourado, H. W. & Wirth, D. F. (1986). Specific DNA probes for the diagnosis of Plasmodium falciparum malaria. Science 231, 1434–6.Google Scholar
Bhasin, V. K., Clayton, C., Trager, W. & Cross, G. A. M. (1985). Variation in the organisation of repetitive DNA sequences in the genomes Plasmodium falciparum clones. Molecular and Biochemical Parasitology 15, 149–58.CrossRefGoogle ScholarPubMed
Bond, P. M. (1987). Diversity in P.falciparum with particular reference to the infected erthrocyte. Ph.D. thesis. University of Liverpool.Google Scholar
Bruce Chwatt, L. J. (1984). DNA probes for malaria diagnosis. Lancet 362, 795.CrossRefGoogle Scholar
Corcoran, L. M., Thompson, J. K., Walliker, D. & Kemp, D. J. (1988). Homologous recombination within subtelomeric repeat sequences generates chromosome size polymorphisms in P. falciparum. Cell 53, 807–13.Google Scholar
Delves, C. J., Goman, M., Ridley, R. G., Matile, H., Lensen, T. H. W., Ponnudurai, T. & Scaife, J. G. (1989). Identification of Plasmodium falciparum infected mosquitoes using a probe containing repetitive DNA. Molecular and Biochemical Parasitology 32, 105112.Google Scholar
Franzen, L., Westin, G., Shabo, R., Aslund, L., Perimann, M., Perrson, T., Wigzell, H. & Petterson, U. (1984). Analysis of clinical specimens by hybridisation with probe containing repetitive DNA from Plasmodium falciparum. Lancet 326, 525–7.Google Scholar
Goman, M., Langsley, G., Hyde, J. E., Yankofsky, N. K., Zoley, J. W. & Scaife, J. G. (1982). The establishment of genomic libraries for the human malaria parasite, Plasmodium falciparum and the identification of individual clones by hybridisation. Molecular and Biochemical Parasitology 5, 391400.CrossRefGoogle ScholarPubMed
Guntaka, R. V., Gowda, S., Rao, A. S. & Green, T. J. (1985). Organisation of the Plasmodium falciparum gemone 1: Evidence for a highly repeated DNA sequence. Nucleic Acids Research 13, 1965–75.CrossRefGoogle Scholar
Leary, J. J., Brigati, D. J. & Ward, D. C. (1983). Rapid and sensitive colorimetric method for visualizing biotin labeled DNA probes hybridized to DNA or RNA immobilized on nitrocellulose: Bio-blots. Proceedings of the National Academy of Sciences, USA 80, 4045–9.CrossRefGoogle ScholarPubMed
Maniatis, T., Fritsh, E. F. & Sambrook, J. (1982). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, New York.Google Scholar
McLaughlin, G. L., Edlind, T. D., Campbell, G. H., Eller, R. F. & Ihler, G. M. (1985). Detection of Plasmodium falciparum using a synthetic DNA probe. American Journal of Tropical Medicine and Hygiene 23, 837–40.CrossRefGoogle Scholar
McLaughlin, G. L., Ruth, J. L., Jablonski, E., Stekekee, R. & Campbell, G. H. (1987). Use of enzyme-linked synthetic DNA in diagnosis of falciparum malaria. Lancet 332, 714–16.CrossRefGoogle Scholar
Mucenski, C. M., Guerry, P., Buesing, M., Szarfman, A., Trosper, J., Walliker, D., Watt, G., Sangalang, R., Ranoa, C. P., Tuazon, M., Majam, O. R., Quakyi, I., Scheibel, L. W., Cross, J. H. & Perine, P. L. (1986). Evaluation of a synthetic oligonucleotide probe for diagnosis of Plasmodium falciparum infections. American Journal of Tropical Medicine and Hygiene 35, 912–20.CrossRefGoogle ScholarPubMed
Oquendo, P., Goman, M., Mackay, M., Langsley, G., Walliker, D. & Scaife, J. (1986). Characterisation of repetitive DNA sequence from the malaria parasite, Plasmodium falciparum. Molecular and Biochemical Parasitology 18, 89101.Google Scholar
Sethabutt, O., Brown, A. E., Gingrich, J., Webster, H. K., Pooyindee, N., Taylor, D. N. & Echeverria, P. (1988). A comparative study of radiolabelled and enzyme conjugated synthetic DNA probes for the diagnosis of falciparum malaria. American Journal of Tropical Medicine and Hygiene 39, 227–31.CrossRefGoogle Scholar
Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98, 503–17.CrossRefGoogle ScholarPubMed
Trager, W. & Jensen, J. B. (1976). Human malaria parasites in continuous culture. Science 193, 673–5.CrossRefGoogle ScholarPubMed
Urdea, M. S., Warner, B. D., Running, J. A., Stempien, M., Clyne, J. & Horn, T. (1988). Comparison of non-radioisotopic hybridisation assay methods using fluorescent, chemiluminescent and enzyme labelled synthetic oligodeoxynucleotide probes. Nucleic Acids Research 16, 4937–56.Google Scholar
Van Der Ploeg, L. H. T., Smits, M., Ponnudurai, T., Vermeulen, A., Meuwissen, J. H. E. T. & Langsley, G. (1985). Chromosome sized DNA molecules of Plasmodium falciparum. Science 229, 658–61.CrossRefGoogle ScholarPubMed
Who Working Group. (1986). The use of DNA probes for malaria diagnosis: Memorandum from a WHO Meeting. Bulletin of the World Health Organization 64, 641–52.Google Scholar
Zolg, J. W., Andrade, L. E. & Scott, E. G. (1987). Detection of Plasmodium falciparum DNA clones as species specific probes. Molecular and Biochemical Parasitology 22, 145–51.CrossRefGoogle ScholarPubMed