Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-23T21:08:13.513Z Has data issue: false hasContentIssue false

Use of 75Se tracer and autoradiographic techniques in the study of schistosomiasis

Published online by Cambridge University Press:  06 April 2009

S. K. Chandiwana
Affiliation:
New York State College of Veterinary Medicine, Cornell University, Ithaca, New York 14853

Summary

The paper provides an overview of recent studies on the use of 75Se to tag larval schistosomes and to monitor their migration and distribution patterns in naive mice and those previously exposed to cercariae. The principles and techniques of radioassay and autoradiography in studying various aspects of 75Se-labelled larval schistosomes are described. The main shortcoming of radioassay in monitoring location and movement of labelled schistosomula is that some of the label dissociates from the schistosomula and accumulates in host tissues, notably the liver. Dissociated label is indistinguishable from schistosomula-bound label making monitoring of parasite migration extremely difficult. This difficulty is overcome by compressed tissue autoradiography where labelled schistosomula can be seen as reduced silver foci on an autoradiographic film, whereas dissociated label is too diffusely distributed to produce such reduced silver foci. Furthermore, using autoradiography, quantitative information on parasite migration in normal and immunized laboratory animals can be obtained that would be impossible using traditional recovery techniques. In addition to using 75Se tracer in migration studies, the radio-isotope has potential for elucidating various aspects of schistosome transmission ecology and snail population dynamics in natural waters.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bruce, J. I., Pezzlo, F., Yajima, Y. & McCarthy, J. E. (1974). Schistosoma mansoni: pulmonary phase of schistosomule migration studied by electron microscopy. Experimental Parasitology 35, 150–60.CrossRefGoogle ScholarPubMed
Bruce, J. I., Weiss, E., Stirewalt, M. A. & Lincicome, D. R. (1969). Schistosoma mansoni: glycogen content and utilization of glucose, pyruvate, glutamate and citric acid cycle intermediates by cercariae and schistosomules. Experimental Parasitology 26, 2940.CrossRefGoogle ScholarPubMed
Butterworth, A. E., Sturrock, R. F. & Houba, V. (1974). Antibody dependent cell-mediated damage to schistosomula in vitro. Nature, London 252, 503–5.CrossRefGoogle ScholarPubMed
Chandiwana, S. K. (1981). Quantification of invasion and early migration of Schistosoma mansoni in mice by radioassay and autoradiography. Thesis, Cornell University, New York.Google Scholar
Chandiwana, S. K. (1987). A hamster exposure technique for detecting the presence of schistosome cercariae in natural water. Journal of Parasitology 73, 452–4.CrossRefGoogle Scholar
Chandiwana, S. K., Christensen, N. Ø. & Frandsen, F. (1987). Seasonal patterns in the transmission of Schisotosoma haematobium, S. mattheei and S. mansoni in the highveld region of Zimbabwe. Acta Tropica 44, 433–44.Google Scholar
Christensen, N. Ø. (1977). A method for the in vivo labelling of Schistosoma mansoni and S. intercalatum cercariae with radioselenium. Zeitschrift für Parasitenkunde 54, 275–88.CrossRefGoogle ScholarPubMed
Christensen, N. Ø. (1978). A method for the in vivo radiolabelling of Diplostomum spathaceum, Hypoderaeum conoideum, Plagiorchiidae sp and Notocotylus attenuatus cercarie with radioselenium. Zeitschrift für Parasitenkunde 57, 155–62.CrossRefGoogle Scholar
Christensen, N. Ø. (1981). Schistosoma bovis, S. intercalatum and S. haematobium: methods for in vivo radiolabelling of cercariae with radioselenium. Journal of Helminthology 55, 912.CrossRefGoogle Scholar
Christensen, N. Ø. & Nansen, P. (1981). Isotopes and radiation in Parasitology IV. International Atomic Energy Agency, Vienna. pp. 207–16.Google Scholar
Christensen, N. Ø., Frandsen, F. & Nansen, P. (1977 a). A method for in vivo labelling of schistosome miracidia with radioselenium. Journal of Parasitology 63, 165–6.CrossRefGoogle ScholarPubMed
Christensen, N. Ø., Frandsen, F. & Nansen, P. (1977 b). Host-finding capacity of schistosome cercariae: comparative efficiency of methods of mice infection and a radioisotope system. Journal of Helminthology 51, 105–13.CrossRefGoogle Scholar
Christensen, N. Ø., Frandsen, F. & Nansen, P. (1979). The effect of some environmental conditions and final host-and parasite – related factors on the penetration of Schistosoma mansoni cercariae into mice. Zeitschrift für Parasitenkunde 59, 267–75.CrossRefGoogle ScholarPubMed
de la Cruz, B., Pesigan, T. P., Banzon, T. C., Sevilla, J., Donato, C., Cruz, A. & Castro, V. (1964). A report on the labelling of Schistosoma japonicum cercariae with radioiron. American Journal of Tropical Medicine and Hygiene 13, 545–7.CrossRefGoogle Scholar
Corretjer, F. J. & Rubini, M. E. (1961). Distribution and disposal of radioactivity in mice infected with 59-Fe-labelled cercariae of Schistosoma mansoni. Experimental Parasitology 11, 147–51.CrossRefGoogle Scholar
Dean, D. & Mangold, B. L. (1984). Autoradiographic analysis of resistance to reinfection with Schistosoma mansoni in mice. Evidence that the liver is a major site of worm elimination. American Journal of Tropical Medicine and Hygiene 33, 97103.CrossRefGoogle Scholar
Dean, D. A., Mangold, B. L., Georgi, J. R. & Jacobson, R. H. (1984). Comparison of Schistosoma mansoni migration patterns in normal and irradiated cercaria immunized mice by means of autoradiographic analysis. Evidence that worm elimination occurs after the skin phase in immunized mice. American Journal of Tropical Medicine and Hygiene 33, 8996.CrossRefGoogle ScholarPubMed
Dobinson, A. R., James, E. R. & Christensen, N. Ø. (1980). Evaluation of L-75 Se-methionine as a radioisotopic marker for studying the migration of Schistosoma mansoni schistosomula in mice. International Journal of Nuclear Medicine and Biology 7, 195–6.CrossRefGoogle Scholar
Frongillo, & Cupp, E. W. (1984). Radiolabelling of Brugia malayi infective larvae in mosquitoes with 75-Se-methionine and detection of these larvae in tissues of the mongolian jird by autoradiography. American Journal of Tropical Medicine and Hygiene 33, 924–9.CrossRefGoogle Scholar
Gazzinelli, G., Ramalho-Pinto, F. J., Pellegrino, J. & Gilbert, B. (1970). Uptake of 59-Fe as a tool for study of the crowding effect in Biomphalaria glabrata. American Journal of Tropical Medicine and Hygiene 19, 1034–7.CrossRefGoogle Scholar
Georgi, J. R. (1982). Schistosoma mansoni: quantification of skin penetration and early migration by differential external radioassay and autoradiography. Parasitology 84, 263–81.CrossRefGoogle ScholarPubMed
Georgi, J. R. & Le Jambre, L. F. (1983). Radiolabelling of infective larvae of Haemonchus contortus (Nematoda: Trichostrongyloidea) with 75Se-methionine and their performance as tracers in sheep. Journal of Parasitology 69, 875–82.CrossRefGoogle ScholarPubMed
Georgi, J. R., Dean, D. & Chandiwana, S. K. (1982). Quantification of Schistosoma mansoni in mouse lungs by radioassay and autoradiography of 75Se-labelled schistosomula. Journal of Parasitology 68, 1092–5.CrossRefGoogle Scholar
Georgi, J. R., Dean, D. A. & Mangold, B. L. (1983). Schistosoma mansoni: temporal distribution of radioselenium in lungs of mice during the first two weeks of infection. Parasitology 86, 31–6.CrossRefGoogle ScholarPubMed
Georgi, J. R., Wade, S. E. & Dean, D. A. (1986). Attrition and temporal distribution of Schistosoma mansoni and S. haematobium schistosomula in laboratory mice. Parasitology 93, 5570.CrossRefGoogle ScholarPubMed
Georgi, J. R., Wade, S. E. & Dean, D. A. (1987). Schistosoma mansoni: mechanism of attrition and routes of migration from lungs to hepatic portal system in the laboratory mouse. Journal of Parasitology 73, 706–11.CrossRefGoogle ScholarPubMed
Hsu, H. H. (1986). The uptake and distribution of radioselenium in the larvae of Fasciola hepatica and its snail host Lymnaea columella. Veterinary Parasitology 21, 233–45.CrossRefGoogle Scholar
Jewsbury, J. M. & Homewood, C. A. (1971). Radiolabelling of schistosome cercariae. Annals of Tropical Medicine and Parasitology 65, 273–4.CrossRefGoogle ScholarPubMed
Johnson, C. R., Angel, C. R. & Erickson, D. G. (1962). The uptake, distribution and excretion of four radionuclides in Australorbis glabratus (Planorbidae). American Journal of Tropical Medicine and Hygiene 11, 855–60.CrossRefGoogle Scholar
Knight, W. B., Ritchie, L. S., Liard, F. & Chiriboga, J. (1970). Labelling of Biomphalaria glabrata and cercariae of Schistosoma mansoni with radioselenium. Experimental Parasitology 22, 309–15.CrossRefGoogle Scholar
Kruger, S. P., Heitman, L. P., Van Wyk, J. A. & McCully, R. M. (1969). The route of migration of Schistosoma mattheei from the lungs to the liver in sheep. Journal of the South African Veterinary Medical Association 40, 3943.Google Scholar
Kwansa, H. A. E. & Murrell, K. D. (1986). In vivo tracking of the migration of Strongyloides ratti in the rat with selenium-75 labelled third stage (L3) larvae. In Nuclear and Related Techniques in Parasitology, (ed. Hayunga, E. G. and M., Stek Jr), pp. 225236. Vienna: International Atomic Energy Agency.Google Scholar
Lengemann, F. W., Grieve, R. B., Chmielewicz, M. & Georgi, J. R. (1986 a). 203Hg and other gamma-emitting radio-isotopes as labels for Dirofilaria immitis microfilariae. Parasitology 92, 451–61.CrossRefGoogle ScholarPubMed
Lengemann, F. W.Marchell, T. F., Chmielewicz, M. & Georgi, J. R. (1986 b). In vitro radioisotopic labelling of the L-3 stage of Brugia malayi. Cornell Veterinarian 76, 259–65.Google ScholarPubMed
Lewert, R. M. & Para, B. J. (1966). The physiological incorporation of carbon-14 in Schistosoma mansoni cercariae. Journal of Infectious Diseases 116, 171–82.CrossRefGoogle ScholarPubMed
Mangold, B. L. & Dean, D. (1983). Autoradiographic analysis of Schistosoma mansoni migration from skin to lungs in naive mice. Evidence that most attrition occurs after the skin phase. American Journal of Tropical Medicine and Hygiene 32, 785–9.CrossRefGoogle ScholarPubMed
Miller, P. & Wilson, R. A. (1978). Migration of the schistosomula of Schistosoma mansoni from skin to lungs. Parasitology 77, 281302.CrossRefGoogle ScholarPubMed
Miller, P. & Wilson, R. A. (1980). Migration of the schistosomula of Schistosoma mansoni from the lungs to the hepatic portal system. Parasitology 80, 267–88.CrossRefGoogle Scholar
Nansen, P., Christensen, N. Ø. & Frandsen, F. (1976). A technique for in vivo labelling of Fasciola hepatica miracidia with radioselenium. Zeitscrift für Parasitenkunde 49, 7380.CrossRefGoogle ScholarPubMed
Para, B. J., Lewert, R. M. & Oczel, M. A. (1970). Schistosoma mansoni: distribution of 14C in isotopically labelled cercariae and its loss during early infection. Experimental Parasitology 27, 273–80.CrossRefGoogle ScholarPubMed
Perez, H., Clegg, J. A. & Smithers, S. R. (1974). Acquired immunity to Schistosoma mansoni in the rat: measurement of immunity by the lung recovery technique. Journal of Parasitology 69, 349–59.CrossRefGoogle ScholarPubMed
Phillips, S. M., Reid, W. A. & Sadun, E. H. (1977). The cellular and humoral immune response to Schistosoma mansoni infections in inbred rats. II. Mechanisms during reexposure. Cellular Immunology 28, 7589.CrossRefGoogle ScholarPubMed
Pinto, R. M., Noronha, D., Almeida, M. S. S., Tendler, M. & Katz, N. (1987). Schistosoma mansoni: migration patterns in normal and immunized Swiss Webster mice by means of autoradiographic analysis. International Symposium on Schistosomiasis, Rio de Janeiro, Abstract No. 12.CrossRefGoogle Scholar
Reid, W. A., Phillips, S. M. & Roscinski, R. J. (1977). Schistosoma mansoni: radioisotope uptake and retention by cercariae and developing schistosomules. Experimental Parasitology 42, 331–42.CrossRefGoogle ScholarPubMed
Sher, F. A., Mackenzie, P. & Smithers, S. R. (1974). Decreased recovery of invading parasites from the lungs as a parameter of acquired immunity to schistosomiasis in the mouse. Journal of Infectious Diseases 130, 626–33.CrossRefGoogle ScholarPubMed
Smithers, S. R. & Gammage, K. (1980). The recovery of Schistosoma mansoni from the skin, lungs and hepatic portal system of naive mice and mice previously exposed to S. mansoni: evidence for two phases of parasite attrition in immune mice. Parasitology 80, 289300.CrossRefGoogle Scholar
Wade, S. & Georgi, J. R. (1987). Radiolabelling and autoradiographic tracing of Toxocara canis larvae in male mice. Journal of Parasitology 73, 116–20.CrossRefGoogle ScholarPubMed
Wheater, P. R. & Wilson, R. A. (1979). Schistosoma mansoni: a histological study of migration in the laboratory mouse. Parasitology 79, 4962.CrossRefGoogle ScholarPubMed
Wilks, N. E. (1967). Lung-to-liver migration of schistosomes in the laboratory mouse. American Journal of Tropical Medicine and Hygiene 16, 599605.CrossRefGoogle ScholarPubMed